8. REFERENCES

Bentley Systems, Inc., Haestad Methods Solutions Center. 2005. Bentley FlowMaster. Service Pack 3.

- Boyle Engineering Corporation, 2008. Water Management Study Phase I Evaluation of Pulse Flows for the Platte River Recovery Implementation Program, Platte River Recovery Implementation Program.
- Boyle Engineering Corporation, 2000. *Water Conservation/Supply Reconnaissance Study,* Governance Committee of the Cooperative Agreement for Platte River Research.
- Boyle Engineering Corporation, 2000. *Reconnaissance-Level Water Action Plan,* Governance Committee of the Cooperative Agreement for Platte River Research.
- Boyle Engineering Corporation. December 31, 2008. Water Management Study: Phase II Evaluation of Pulse Flows for the Platte River Recovery Implementation Program.
- Cannia, J.C., Woodward, D. and Cast, L.D., 2006. Cooperative Hydrology Study COHYST Hydrostratigraphic Units and Aquifer Characterization Report. Funded by the Nebraska Environmental Trust.
- Chen, X.H., 2005. Statistical and geostatistical features of streambed hydraulic conductivities in the Platte River, Nebraska. Environmental Geology 48 (6), 693–701.
- Chen, X.; Burbach, M., and Cheng, C. 2008. Electrical and Hydraulic Vertical Variability in channel sediments and its effects on streamflow depletion due to groundwater extraction. Journal of Hydrology, v. 328, pg. 250-266.
- Chen, X.H., 2009, Song, J., Cheng, C., Wang, D., Lackey, S., 2009. A new method for mapping variability in vertical seepage flux in streambeds. Hydrogeology Journal, Volume 17, 519-525.

Chow, Ven Te, 1969. Advances in Hydroscience.

- CH2M Hill. October 1, 1993. *Phase I Elwood Seepage Studies* (Memorandum to Central Public Power and Irrigation District).
- Federal Energy Regulatory Commission (FERC). February 12, 2007. Letter to US Fish and Wildlife Service, Subject: Request for Formal Consultation Under the Endangered Species Act.
- Platte River Recovery Implementation Program. December 7, 2006. Platte River Recovery Implementation Program (PRRIP) Program Document, Attachment 5, Section 11, Water Plan Reference Materials, Appendix A-5.
- Platte River Recovery Implementation Program. October 24, 2006. *Final Platte River Recovery Implementation Document.*

Platte River Recovery Implementation Program, October 24, 2006. Adaptive Management Plan.

United States Army Corps of Engineers, Hydrologic Engineering Center. March 2008. *HEC-RAS River Analysis System Version 4.0.0*, Davis California.

United States Department of the Interior, Bureau of Reclamation. 1978. Design of Small Canal Structures.

United States Department of the Interior, April 2006. *Platte River Recovery Implementation Program Final Environmental Impact Statement.*

U.S. Army Corp of Engineers, HEC-HMS, V.3.3

Federal Highway Administration, HY-8, V.7.1

LIST OF APPENDICES

- Appendix A WMS Phase II Figures
- Appendix B Figures
- Appendix C Scoring Matrix, Capital Costs and Operating Costs
- Appendix D Photolog
- Appendix E J-2 Seepage Analysis Memorandum
- Appendix F Plum Creek Hydrologic Engineering Center's River Analysis System (HEC-RAS) and Platte River and Plum Creek Peak Flow Analyses
- Appendix G Scope of Work for Feasibility Analysis of Preferred Alternative
- Appendix H– Elwood Embankment Stability Analysis
- Appendix I Summary of J-2 Options and Additional J-2 Options Not Scored

Appendix A

Water Management Study Phase II Report Figures (Boyle, 2008)

(Note that figure numbers are those from the Water Management Study.)

Appendix B

Elwood and J2 Alternatives Analysis Project FIGURES

AM C											
	Stage Storage										
00 600 70	10										
MAX. PONDING HEIGHT ELEV.=2337											
	DAM "C"	FIGURE									
ASSOCIATES	STAGE STORAGE	1.8									

J-2 ALTERNATIVE 1, DAM D

Return Alternative 2 Stage Storage - Area 1											
Area (sf)	Area (acre)	Incremental Storage (acre-ft)	Total Storage (acre-ft)								
14,787	0	0	0								
148,867	3	2	2								
17,409,781	400	202	203								
17,461,971	401	400	604								
17,514,236	402	401	1,005								
17,566,575	403	403	1,408								
17,618,989	404	404	1,812								
17,671,477	406	405	2,217								
17,724,039	407	406	2,623								
17,776,676	408	407	3,031								
17,829,387	409	409	3,439								
17,882,172	411	410	3,849								
17,935,032	412	411	4,260								
17,987,966	413	412	4,673								
18,040,975	414	414	5,086								
18,094,058	415	415	5,501								
18,147,215	417	416	5,917								
18,200,446	418	417	6,334								
18,253,752	419	418	6,753								
18,307,132	420	420	7,172								
18,360,587	422	421	7,593								
18,414,116	423	422	8,015								
18,467,719	424	423	8,439								
18,521,397	425	425	8,863								
18,575,149	426	426	9,289								
18,596,671	427	427	9,716								
<u>L</u>	EGEND	TORAGE AREA	BOUNDARY								
	E	ROPOSED STO									
FNT -	E	XISTING MAJO	R CONTOUR								
		DTE:									
	COL	NTOURS									
		VELOPED FROM E COMBINATION LIDAR POINTS HIN THE PLAT									
PS CANAL	r Riv Poi The	ER AND NED NTS SOUTH OI E PLATTE RIVE	R. PLATTE RIVER								
OLSSO		CAVATION	FIGURE								
ASSOCI	ATES	AREA 1									

ION 6 TO	NNSHIP BN	RANGE 20	DML 1	
COUNTY REMAIN		749 R	ROAD	
TTT		23		
// //		Ta		
		- 1	1	<u>.</u>
/////	///	~		. N
				1
ROAD		TRIBUTARY	1	12
// //		Z.		
/////		1	0'	500° 1000'
/////)	SCAL	E IN FEET
-//-//	IN	1	4	
1111	1.81-		BN	
// //	AIL	MAS	SHIE	
Jelde h		1 1		
11-14	Torce TI	2m 2014	1	
	J ZAN	<u></u>	1-1-	
	Mart I little in		1 1	
IL MARTIN	T AND AND			
AL AND		2	5	
AST-		A A	5	
Return Alter	native 2 Stag	e Storage - Are	a 2	
Return Alter	native 2 Stag	e Storage - Are	aa 2	
Return Alter Area (st)	native 2 Stag	e Storage - Are Incremental Storage (acre-ft)	a 2 Total Storage	
Return Alter Area (sf) 442,097	native 2 Stag	e Storage - Are Incremental Storage (acre-ft)	Total Storage (acre-ft)	
Area (sf) 442,097 1,706,368	native 2 Stag Area (acre) 10 39	e Storage - Are Incremental Storage (acre-ft) 0 25	Total Storage (acre-ft) 0 25	
Area (sf) 442,097 1,706,368 3,044,434	Area (acre) 10 39 70	e Storage - Are Incremental Storage (acre-ft) 0 25 55	Total Storage (acre-ft) 0 25 79	
Area (st) 442,097 1,706,368 3,044,434 4,930,124	Area (acre) 10 39 70 113	e Storage - Are Incremental Storage (acre-ft) 0 25 55 92	Total Storage (acre-ft) 0 25 79 171	
Area (sf) 442,097 1,706,368 3,044,434 4,930,124 6,765,381	Area (acre) 10 39 70 113 155	e Storage - Are Incremental Storage (acre-ft) 0 25 55 92 134	Total Storage (acre-ft) 0 25 79 171 305	
Area (sf) 442,097 1,706,368 3,044,434 4,930,124 6,765,381 12,593,574	Area (acre) 10 39 70 113 155 289	e Storage - Are Incremental Storage (acre-ft) 0 25 55 92 134 222	Total Storage (acre-ft) 0 25 79 171 305 527	
Area (sf) 442,097 1,706,368 3,044,434 4,930,124 6,765,381 12,593,574 12,854,484	Area (acre) 10 39 70 113 155 289 295	e Storage - Are Incremental Storage (acre-ft) 0 25 55 92 134 222 292	Total Storage (acre-ft) 0 25 79 171 305 527 819	
Area (sf) 442,097 1,706,368 3,044,434 4,930,124 6,765,381 12,593,574 12,854,484 13,341,838	Area (acre) 10 39 70 113 155 289 295 306	e Storage - Are Incremental Storage (acre-ft) 0 25 55 92 134 222 292 301	Total Storage (acre-ft) 0 25 79 171 305 527 819 1,120	
Area (sf) 442,097 1,706,368 3,044,434 4,930,124 6,765,381 12,593,574 12,854,484 13,341,838 13,959,225	Area (acre) 10 39 70 113 155 289 295 306 320	e Storage - Are Incremental Storage (acre-ft) 0 25 55 92 134 222 292 301 313	Total Storage (acre-ft) 0 25 79 171 305 527 819 1,120 1,433	
Image: Area (sf) Area (sf) 442,097 1,706,368 3,044,434 4,930,124 6,765,381 12,593,574 12,854,484 13,341,838 13,959,225 14,597,327	Area (acre) 10 39 70 113 155 289 295 306 320 335	e Storage - Are Incremental Storage (acre-ft) 0 25 55 92 134 292 301 313 328	Total Storage (acre-ft) 0 25 79 171 305 527 819 1,120 1,433 1,761	
Area (sf) 442,097 1,706,368 3,044,434 4,930,124 6,765,381 12,593,574 13,341,838 13,959,225 14,597,327 15,450,584	Area (acre) 10 39 70 113 155 289 295 306 320 335 355	e Storage - Are Incremental Storage (acre-ft) 0 25 55 92 134 222 292 301 313 328 345	Total Storage (acre-ft) 0 25 79 171 305 527 819 1,120 1,433 1,761 2,106	
Area (sf) 442,097 1,706,368 3,044,434 4,930,124 6,765,381 12,593,574 12,854,484 13,341,838 13,959,225 14,597,327 15,450,584 16,531,221	Area (acre) 10 39 70 113 155 289 295 306 320 335 355 365 380	e Storage - Are Incremental Storage (acre-ft) 0 25 55 92 134 222 292 301 313 328 345 367	Total Storage (acre-ft) 0 25 79 1711 305 527 819 1,120 1,433 1,761 2,106 2,473	
Image: Area (sf) Area (sf) 442,097 1,706,368 3,044,434 4,930,124 6,765,381 12,593,574 12,854,484 13,341,838 13,959,225 14,597,327 15,450,584 16,531,221 17,471,798 18,061,492	Area (acre) 10 39 70 113 155 289 295 306 320 335 355 380 401 415	e Storage - Are Incremental Storage (acre-ft) 0 25 55 92 134 292 301 313 328 345 367 390	Total Storage (acre-ft) 0 25 79 171 305 527 819 1,120 1,433 1,761 2,106 2,473 2,863 3,274	
Area (sf) 442,097 1,706,368 3,044,434 4,930,124 6,765,381 12,593,574 12,854,484 13,341,838 13,959,225 14,597,327 15,450,584 16,531,221 17,471,798 18,061,498	Area (acre) 10 39 70 113 155 289 295 306 320 335 355 380 401 415 430	e Storage - Are Incremental Storage (acre-ft) 0 25 55 92 134 222 292 301 313 328 345 367 390 408 492	Total Storage (acre-ft) 0 25 79 171 305 527 819 1,120 1,433 1,761 2,106 2,473 2,863 3,271 3,694	
Area (sf) 442,097 1,706,368 3,044,434 4,930,124 6,765,381 12,593,574 12,854,484 13,341,838 13,959,225 14,597,327 15,450,584 16,531,221 17,471,798 18,061,498 18,743,860 19,769,331	Area (acre) 10 39 70 113 155 289 295 306 320 335 355 380 401 415 430 454	e Storage - Are Incremental Storage (acre-ft) 0 25 55 92 134 222 292 301 313 328 345 345 367 390 408 422 442	Total Storage (acre-ft) 0 25 79 171 305 527 819 1,120 1,433 1,761 2,106 2,473 2,863 3,271 3,694 4,136	
Area (sf) 442,097 1,706,368 3,044,434 4,930,124 6,765,381 12,593,574 12,854,484 13,345,838 13,959,225 14,597,327 15,450,584 16,531,221 17,471,798 18,061,498 18,743,860 19,769,331 20,972,974	Area (acre) 10 39 70 113 155 289 295 306 320 335 355 380 401 415 430 454 481	e Storage - Are Incremental Storage (acre-ft) 0 25 55 92 134 222 292 301 313 328 345 367 390 408 422 442 442	Total Storage (acre-ft) 0 25 79 171 305 527 819 1,120 1,433 1,761 2,106 2,473 2,863 3,271 3,694 4,136 4,604	
Area (sf) 442,097 1,706,368 3,044,434 4,930,124 6,765,381 12,593,574 12,854,484 13,341,838 13,959,225 14,597,327 15,450,584 16,531,221 17,471,798 18,061,498 19,769,331 20,972,974 21,253,566	Area (acre) 10 39 70 113 155 289 295 306 320 335 355 380 401 415 430 454 481 488	e Storage - Are Incremental Storage (acre-ft) 0 25 55 92 134 222 292 301 313 328 345 367 390 408 408 422 442 468	Total Storage (acre-ft) 0 25 79 171 305 527 819 1,120 1,433 1,761 2,106 2,473 2,863 3,271 3,694 4,136 4,604 5,088	
Area (sf) 442,097 1,706,368 3,044,434 4,930,124 6,765,381 12,593,574 12,854,484 13,341,838 13,959,225 14,597,327 15,450,584 16,531,221 17,471,798 18,061,498 18,743,860 19,769,331 20,972,974 21,253,566 21,519,828	Area (acre) 10 39 70 113 155 289 295 306 320 335 355 380 401 415 430 454 481 488 494	e Storage - Are Incremental Storage (acre-ft) 0 25 55 92 134 222 292 301 313 328 345 345 367 390 408 422 442 468 485 491	Pa 2 Total Storage (ac re-ft) 0 25 79 171 305 527 819 1,120 1,433 1,761 2,106 2,473 2,863 3,271 3,694 4,136 4,604 5,088 5,579	
Area (sf) 442,097 1,706,368 3,044,434 4,930,124 6,765,381 12,593,574 12,854,484 13,341,838 13,959,225 14,597,327 15,450,584 16,531,221 17,471,798 18,061,498 18,743,860 19,769,331 20,972,974 21,253,566 21,519,828 21,795,508	Area (acre) 10 39 70 113 155 289 295 306 320 335 355 380 401 415 430 401 415 430 454 481 488 494 500	e Storage - Are Incremental Storage (acre-ft) 0 25 55 92 134 222 292 301 313 328 345 367 367 390 408 422 442 442 448 485 485	Image Image Total Storage (acre-ft) 0 25 79 171 305 527 819 1,120 1,433 1,761 2,106 2,473 2,863 3,271 3,694 4,136 4,604 5,088 5,579 6,076	

rn Alternative 2 Stage Storage - Area 3									
ea f)	Area (acre)	Incremental Storage (acre-ft)	Total Storage (acre-ft)						
16	0	0	0						
558	0	0	0						
345	1	1	1						
001	1	1	1						
314	1	1	2						
539	1	1	3						
343	1	1	4						
376	1	1	5						
320	1	1	6						
9,270	385	193	199						
0,489	386	385	584						
1,784	388	387	971						
3,155	389	388	1,359						
4,601	390	390	1,749						
6,122	392	391	2,140						
7,719	393	392	2,533						
9,390	395	394	2,927						
1,137	396	395	3,322						
2,959	397	397	3,719						
4,857	399	398	4,117						
6,830	400	400	4,516						

	_	_	

STORAGE AREA BOUNDARY EXISTING GRADE PROPOSED STORAGE

- TOP OF EMBANKMENT
- EXISTING MAJOR CONTOUR

NOTE:

*STORAGE AREA WILL REQUIRE PUMPS TO FILL BETWEEN ELEVATION 2359 TO ELEVATION 2366.

EXCAVATION AREA 3

2.4

Return Alternative 2 Stage Storage - Area 4									
Area (sf)	Area (acre)	Incremental Storage (acre-ft)	Total Storage (acre-ft)						
27,826,729	639	0	0						
27,859,787	640	320	320						
27,925,961	641	640	960						
27,992,213	643	642	1,602						
28,058,544	644	643	2,245						
28,124,954	646	645	2,890						
28,191,442	647	646	3,536						
28,258,008	649	648	4,184						
28,324,653	650	649	4,834						
28,391,376	652	651	5,485						
28,458,178	653	653	6,137						

LEGEND

PROGRAM LAND BOUNDARY DAM CENTERLINE MAX STAGE STORAGE

SITE LOCATION

3.1

J-2 Return Alternative 3 Stage Storage									
Elevation	Area (sf)	Area (acre)	Incremental Storage (acre-ft)	Total Storage (acre-ft)					
2321	20,661	0	0	0					
2322	109,688	3	1	1					
2323	219,481	5	4	5					
2324	297,966	7	6	11					
2325	373,489	9	8	19					
2326	466,945	11	10	29					
2327	564,618	13	12	40					
2328	678,891	16	14	55					
2329	782,507	18	17	71					
2330	909,688	21	19	91					
2331	1,070,703	25	23	114					
2332	1,235,602	28	26	140					
2333	1,417,541	33	30	171					
2334	1,642,770	38	35	206					
2335	1,899,481	44	41	246					
2336	2,136,071	49	46	293					
2337	2,349,470	54	51	344					
2338	2,562,213	59	56	401					
2339	2,785,721	64	61	462					
2340	3,013,934	69	67	528					
2341	3,244,954	74	72	600					
2342	3,473,378	80	77	677					
2343	3,734,216	86	83	760					
2344	3,964,885	91	88	849					
2345	4,198,629	96	94	942					
2346	4,447,319	102	99	1,041					
2347	4,792,244	110	106	1,148					
2348	5,173,118	119	114	1,262					
2349	5,535,109	127	123	1,385					
2350	5,982,798	137	132	1,517					
2351	6,354,399	146	142	1,659					

PROJECT: 09-1466 DRAWN BY: CRL

DATE: 1.27.10

J-2 RETURN ALTERNATIVE 3 PHELPS COUNTY, NEBRASKA

DWD DATE: 10.01.09

GOSPER COUNTY, NEBRASKA

USER: Exhibit.DWG Alignment

cuhrich

\Projects\009-1466_WTRS\091466-DB\dwg\Exhibits\Ditch
ec 21, 2009 10:48am XREFS: Topo Title Block

· C

ASSOCIATES

CANAL PROFILE

4.2

F:\Projects\009-1466_MUNI\Exhibits\PRRIP-EIwood-Canal.dwg USER: tgolka Dec 21, 2009 9:56am XREFS: Johnson_Lake_QUAD TTLBLK-Elwood-22x34 DWC: DATE:

DWD DATE: 10.01.09

GOSPER COUNTY, NEBRASKA

USER: Exhibit.DWG Alignment

cuhrich

\Projects\009-1466_WTRS\091466-DB\dwg\Exhibits\Ditch
ec 21, 2009 10:48am XREFS: Topo Title Block

· C

ASSOCIATES

Appendix C

Scoring Matrix, Capital Costs and Operating Costs

Elwood and J-2 Alternatives Analysis Scoring

					Criteria #	1	2	3	4	5	6	7	8	9	10	
Alternative	Reservoir	Inlet	Outlet	Transmission	Criteria	Life Cycle Costs for 50-year life span	SDHF Augmentation	Ability to Reduce Shortages to Target Flows	Flexibility and Multiple Benefits	Ability to Permit (NEPA)	Impacts to Landowners / Other Facilities and Installations	Portion of the Reach Positively Impacted by Water Delivery	Opportunities for Partnering	Implementation time	Hydropower Flow Cycling Mitigation	Weighted Total
					weight	10	10	8	5	10	8	10	5	10	6	
J -2 Alt 1	J-2 south channel option	J-2 Canal	Radial Gates	n/a	Description	Life cycle costs will be on the order of \$34 per ac-ft	This alternative can only deliver an average of 350 cfs	Target flow shortage reduction will amoun to 14,660 acre-feet per year	Sediment delivery will not be extensive, fisheries are a possibility, and there are benefits to CNPPID	Impoundment of the south channel of the Platte River could be most difficult to permit. Likely individual permit.	No impacts to landowners, completely contained in south channel	Water will be delivered to the entire reach	CNPPID, and perhaps Fish and Wildlife will likely be interested in partnering	Construction could be finished by as early as 2012	Hydropower flow cycling can be mitigated effectively to 99%	
					Score	4	0	3	3	1	5	5	5	3	5	264
J -2 Alt 2, Area 1	J-2 Excavation Area 1	Phelps Canal	Radial Gates	n/a	Description	Life cycle costs will be on the order of \$16 per ac-ft	This alternative can only deliver 1,667 cfs	Target flow shortage reduction will amoun to 33,668 acre-feet per year	Sediment delivery will not be extensive, fisheries are a t possibility, and there are benefits to CNPPID	Off-line excavation should be relatively easy to permit, likely to require 404 nationwide permit.	One landowner affected	Water will be delivered to the entire reach	CNPPID, and perhaps Fish and Wildlife will likely be interested in partnering	Construction could be finished by as early as 2012	Hydropower flow cycling can be mitigated effectively to 59%	
					Score	5	3	5	3	5	5	5	5	3	1	336
J -2 Alt 2, Area 2	J-2 Excavation Area 2	Phelps Canal+ pumps	Radial Gates	n/a	Description	Life cycle costs will be on the order of \$16 per ac-ft	This alternative can only deliver 1,333 cfs	Reduction of shortages to target flows of 24,974 acre- feet per year	Sediment delivery will not be extensive, fisheries are a possibility, and there are benefits to CNPPID	Impacts to Plum Creek make this location more difficult to permit, likely require 404 individual permit.	Three landowners affected	Water will be delivered to the entire reach	CNPPID, and perhaps Fish and Wildlife, will likely be interested in partnering	Construction could be finished by as early as 2012	Hydropower flow cycling can be mitigated effectively to 59%	
					Score	5	3	5	3	2	4	5	5	3	1	298
J -2 Alt 2, Area 3	J-2 Excavation Area 3	J-2 Return	Radial Gates	n/a	Description	Life cycle costs will be on the order of \$46 per ac-ft	This alternative can only deliver 667 cfs	Reduction of shortages to target flows of 20,341 acre- feet per year	Sediment delivery will not be extensive, fisheries are a possibility, and there are benefits to CNPPID	Apparent impacts to smaller streams. May need 404 nationwide or individual permit.	Four landowners affected	Water will be delivered to the entire reach	CNPPID, and perhaps Fish and Wildlife, will likely be interested in partnering	Construction could be finished by as early as 2012	Hydropower flow cycling can be mitigated effectively to 99%	
					Score	3	0	5	3	4	4	5	5	3	5	292
J -2 Alt 2, Area 4	J-2 excavation Area 4	J-2 Return	Radial Gates	n/a	Description	Life cycle costs will be on the order of \$80 per ac-ft	This alternative can only deliver 667 cfs	Reduction of shortages to target flows of 24,268 acre- feet per year	Sediment delivery will not be extensive, fisheries are a possibility, and there are benefits to CNPPID	Apparent impacts to smaller streams. May need 404 nationwide or individual permit.	Four landowners affected	Water will be delivered to the entire reach	CNPPID, and perhaps Fish and Wildlife, will likely be interested in partnering	Construction could be finished by as early as 2012	Hydropower flow cycling can be mitigated effectively to 59%	
					Score	2	0	5	3	4	4	5	5	3	1	258
J -2 Alt 2, Area 1 & 2	J-2 excavation Areas 1&2	Phelps Canal	Radial Gates	n/a	Description	Life cycle costs will be on the order of \$19 per ac-ft	This alternative can deliver 2,000 cfs	Reduction of shortages to target flows of 47,480 acre- feet per year	Sediment delivery will not be extensive, fisheries are a possibility, and there are benefits to CNPPID	Impacts to Plum Creek make this location more difficult to permit, likely will need 404 individual permit.	Four landowners affected	Water will be delivered to the entire reach	CNPPID, and perhaps Fish and Wildlife, will likely be interested in partnering	Construction could be finished by as early as 2012	Hydropower flow cycling can be mitigated effectively to 99%	
					Score	4	5	5	3	2	4	5	5	3	5	332
J -2, Alt 3	9.7 Canal Reservoir	9.7 Canal	Radial Gates	n/a	Description	Life cycle costs will be on the order of \$23 per ac-ft	This alternative can only deliver 279 cfs	Reduction of shortages to target flows of 8,298 acre- feet per year	Sediment delivery will be minimal, fisheries are a possibility, and there are benefits to CNPPID	Impoundment of a drainage would require 404 individual permit, may make permitting difficult.	Two landowners affected	Water will be delivered to 80% of the reach.	CNPPID, and perhaps Fish and Wildlife, will likely be interested in partnering	Construction could be finished by as early as 2012	Hydropower flow cycling can be mitigated effectively to 83%	
				ļ	Score	4	0	2	3	2	4	4	5	3	4	242

Elwood and J-2 Alternatives Analysis Scoring

					Criteria #	1	2	3	4	5	6	7	8	9	10	
Alternative	Reservoir	Inlet	Outlet	Transmission	Criteria	Life Cycle Costs for 50-year life span	SDHF Augmentation	Ability to Reduce Shortages to Target Flows	Flexibility and Multiple Benefits	Ability to Permit (NEPA)	Impacts to Landowners / Other Facilities and Installations	Portion of the Reach Positively Impacted by Water Delivery	Opportunities for Partnering	Implementation time	Hydropower Flow Cycling Mitigation	Weighted Total
					Weight	10	10	8	5	10	8	10	5	10	6	
E-1	Elwood buttress	Gravity Canal	Tunnels	Plum Creek, 2,400 cfs	Description	Life cycle costs will be on the order of \$80 per ac-ft	This alternative will deliver 2,000 cfs to Overton	Reduction of shortages to target flows of 19,408 acre- feet per year	Sediment delivery will be good, fisheries will be supported, and there are benefits to CNPPID	Some impacts to Plum Creek. Depending on impacts, may need 404 individual permit.	Three landowners impacted for gravity canal	Water will be delivered to the entire reach	CNPPID, and perhaps Fish and Wildlife, will likely be interested in partnering	Construction could be finished by as early as 2012	No hydropower flow cycling mitigation	
					Score	2	5	4	5	3	4	5	5	3	0	294
E-2	Elwood remove & replace embankment	Gravity Canal	Open cut 2 pipes	Plum Creek, 2,400 cfs	Description	Life cycle costs will be on the order of \$84 per ac-ft	This alternative will deliver 2,000 cfs to Overton	Reduction of shortages to target flows of 19,408 acre- feet per year	Sediment delivery will be good, fisheries will be supported, and there are benefits to CNPPID	Some impacts to Plum Creek. Depending on impacts, may need 404 individual permit.	Three landowners impacted for gravity canal	Water will be delivered to the entire reach	CNPPID, and perhaps USFWS, will likely be interested in partnering	Construction could be finished by as early as 2012	No hydropower flow cycling mitigation	
					Score	1	5	4	5	3	4	5	5	3	0	284
E-3	Elwood remove & replace upstream shell	Gravity Canal	2-8' Tunnels	Plum Creek, 2,400 cfs	Description	Life cycle costs will be on the order of \$84 per ac-ft	This alternative will deliver 2,000 cfs to Overton	Reduction of shortages to target flows of 19,408 acre- feet per year	Sediment delivery will be good, fisheries will be supported, and there are benefits to CNPPID	Some impacts to Plum Creek. Depending on impacts, may need 404 individual permit.	3 landowners impacted for gravity canal	Water will be delivered to the entire reach	CNPPID, and perhaps USFWS, will likely be interested in partnering	Construction could be finished by as early as 2012	No hydropower flow cycling mitigation	
					Score	1	5	4	5	3	4	5	5	3	0	284
F-4	Elwood buttress	Existing E-	2-8' Tunnels	Plum Creek, 2 400 cfs	Description	Life cycle costs will be on the order of \$67 per ac-ft	This alternative will deliver 2,000 cfs to Overton	Reduction of shortages to target flows of 17,788 acre- feet per year	Sediment delivery will be good, fisheries will be supported, and there are benefits to CNPPID	Some impacts to Plum Creek. Depending on impacts, may need 404 individual permit	No landowner	Water will be delivered to the	USFWS will likely be interested in partnering	Construction could be finished by as early as 2012	No hydropower flow cycling mitigation	
		oo ounu		2,100 010	Score	2	5	4	5	3	5	5	3	3	0	292
E-5	Elwood remove & replace embankment	Existing E- 65 Canal	Open cut 2 pipes	Plum Creek, 2,400 cfs	Description	Life cycle costs will be on the order of \$70 per ac-ft	This alternative will deliver 2,000 cfs to Overton	Reduction of shortages to target flows of 17,788 acre- feet per year	Sediment delivery will be good, fisheries will be supported, and there are benefits to CNPPID	Some impacts to Plum Creek. Depending on impacts, may need 404 individual permit.	No landowner impacts	Water will be delivered to the entire reach	USFWS will likely be interested in partnering	Construction could be finished by as early as 2012	No hydropower flow cycling mitigation	
					Score	2	5	4	5	3	5	5	3	3	0	292
E-6	Elwood remove & replace upstream shell	Existing E- 65 Canal	2-8' Tunnels	Plum Creek, 2,400 cfs	Description	Life cycle costs will be on the order of \$70 per ac-ft	This alternative will deliver 2,000 cfs to Overton	Reduction of shortages to target flows of 17,788 acre- feet per year	Sediment delivery will be good, fisheries will be supported, and there are benefits to CNPPID	Some impacts to Plum Creek. Depending on impacts, may need 404 individual permit.	No landowner impacts	Water will be delivered to the entire reach	USFWS will likely be interested in partnering	Construction could be finished by as early as 2012	No Hydropower flow cycling mitigation	
			 		Score	2	5	4	5	3	5	5	3	3	0	292
E/J-2 Alt 2, Area 1	Elwood buttress, J-2 excavation, Area 1 modified	Gravity Canal	Tunnels (1 only)	Plum Creek, 1,200 cfs	Description	Life cycle costs will be on the order of \$33 per ac-ft	This alternative will deliver 2,000 cfs to Overton	Reduction of shortages to target flows of 33,668 acre- feet per year	Sediment delivery will be good, fisheries will be supported, and there are benefits to CNPPID	Less impacts to Plum Creek. May need either 404 nationwide or individual permit.	One landowner in J2 area 1, three landowners for Elwood gravity canal; total of four landowners affected	Water will be delivered to the entire reach	CNPPID, and perhaps USFWS, will likely be interested in partnering	Construction could be finished by as early as 2012	Hydropower flow cycling can be mitigated effectively to 83%	
				-	Score	4	5	5	4	4	4	5	5	3	4	351
E/J-2 Alt 2, Area 2	Elwood buttress, J-2 excavation, Area 2	Gravity Canal	Tunnels (1 only)	Plum Creek, 1,200 cfs	Description	Life cycle costs will be on the order of \$37 per ac-ft 4	This alternative will deliver 2,000 cfs to Overton 5	Reduction of shortages to target flows of 24,974 acre- feet per year 5	Sediment delivery will be good, fisheries will be supported, and there are benefits to CNPPID 3	Less impacts to Plum Creek. May need either 404 nationwide or individual permit.	Three landowners in J2 area 2,three landowners for Elwood gravity canal; total of six landowners affected 2	Water will be delivered to the entire reach 5	CNPPID, and perhaps USFWS, will likely be interested in partnering 5	Construction could be finished by as early as 2012 3	Hydropower flow cycling can be mitigated effectively to 83% 4	330
Elwood and J-2 Alternatives Analysis Capital and Operating Costs

						Operating	Total	SDHF	SDHF	Reductions to Shortages		Delivered	Life Cvcle	Capital	Capital	Capital
		Inlet	Outlet	Conveyance	Capital	Costs	Costs	Augmentation	Augmentation	to Target Flows, Normal	Delivered	Total, ac-ft	Cost per	Cost per	Cost per	Cost per
Alternative	Reservoir ¹	Costs (\$000)	Costs (\$000)	Costs (\$000)	Costs ² (\$000)	(50-yr \$000)	(\$000)	cfs	ac-ft/yr ³	Year, ac-ft/yr ⁴	Total, ac-ft/yr	(50 yr)⁵	ac-ft	ac-ft SDHF	ac-ft Target	ac-ft Total
J -2 Alt 1	J-2 south channel option	J-2 Canal	Radial Gates	n/a					-						ŭ	
	\$11,452	\$0	\$6,008		\$17,460	\$10,913	\$28,373	350	1,825	14,660	16,485	824,250	\$34	\$9,567	\$1,191	\$1,059
J -2 Alt 2, Area 1	Area 1	Phelps Canal	Radial Gates	n/a												
	\$23,208	\$310	\$688		\$24,206	\$9,077	\$33,283	1,489	8,860	33,668	42,528	2,126,408	\$16	\$2,732	\$719	\$569
		Phelps Canal+	-													
J -2 Alt 2, Area 2	Area 2	pumps	Radial Gates	n/a												
	\$15,043	\$2,115	\$325		\$17,483	\$7,606	\$25,089	1,129	6,580	24,974	31,554	1,577,700	\$16	\$2,657	\$700	\$554
J -2 Alt 2, Area 3	Area 3	J-2 Return	Radial Gates	n/a												
	\$39,719	\$465	\$340		\$40,541	\$16,550	\$57,091	774	4,516	20,341	24,857	1,242,850	\$46	\$8,977	\$1,993	\$1,631
J -2 Alt 2, Area 4	Area 4 \$83 102	J-2 Return \$465	Radial Gates	n/a	\$83 877	\$34.040	\$117 917	905	5 387	24 268	29 655	1 482 750	\$80	\$15 570	\$3.456	\$2,828
J -2 Alt 2, Area 1 & 2	Areas 1&2	Phelps Canal	Radial Gates	n/a	φ00,077	φ0+,0+0	φιι <i>ι</i> ,σι <i>ι</i>	000	0,007	24,200	20,000	1,402,700	φοσ	φ10,070	φ0,400	φ2,020
o _ /, / ou / u _	\$38.251	\$775	\$1.013		\$40.039	\$16.064	\$56,103	2.000	11.901	47,480	59.381	2.969.041	\$19	\$3.364	\$843	\$674
J -2, Alt 3	9.7 Canal Reservoir	9.7 Canal	Radial Gates	n/a	 ,	• •• • •••	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_,	,			_,,.	,	<i>† 0,0 0 1</i>	, , , , , , , , , , , , , , , , , , , 	
	\$5,392	\$310	\$357		\$6,059	\$5,302	\$11,361	279	1,659	8,298	9,957	497,850	\$23	\$3,652	\$730	\$609
				Plum Creek,												
E-1	Elwood buttress	Gravity Canal	Tunnels	2,400 cfs												
	\$2,797	\$6,265	\$12,507	\$21,373	\$42,942	\$34,495	\$77,437	2,000	11,901	19,408	19,408	970,400	\$80	\$3,608	\$2,213	\$2,213
			Open cut 2	Plum Creek,												
E-2	Elwood remove & replace embankment	Gravity Canal	pipes	2,400 cfs												
	\$9,453	\$6,265	\$8,353	\$21,373	\$45,444	\$36,059	\$81,503	2,000	11,901	19,408	19,408	970,400	\$84	\$3,819	\$2,342	\$2,342
				Plum Creek,												
E-3	Elwood remove & replace upstream shell	Gravity Canal	2-8' Tunnels	2,400 cfs												
	\$5,377	\$6,265	\$12,507	\$21,373	\$45,522	\$36,108	\$81,630	2,000	11,901	19,408	19,408	970,400	\$84	\$3,825	\$2,346	\$2,346
		Existing E-65		Plum Creek,												
E-4	Elwood buttress	Canal	2-8' lunnels	2,400 cfs		.										
	\$2,797	\$0 Eviation E OE	\$12,507	\$21,373	\$36,677	\$22,471	\$59,148	2,000	11,901	17,788	17,788	889,400	\$67	\$3,082	\$2,062	\$2,062
		Existing E-65	Open cut 2	Plum Creek,												
E-5	Elwood remove & replace embankment	Canal	pipes	2,400 CTS	¢20.170	¢00.400		2 000	11.001	17 700	17 700	000 400	¢70	¢0.000	¢0,000	¢0.000
	\$9,453	\$U	\$8,353	\$21,373	\$39,179	\$23,409	\$62,588	2,000	11,901	17,788	17,788	889,400	\$70	\$3,292	\$2,203	\$2,203
		Existing E-65		Plum Creek,												
E-6	Elwood remove & replace upstream shell	Canal	2-8' Tunnels	2,400 cfs	* ~~ ~~ 7	\$22.000	\$22 102	0.000	11.001	17 700	17 700	000 400	A 70	*• • • • •	*0 0 0 7	*• • • • 7
	\$5,377	\$0	\$12,507	\$21,373	\$39,257	\$22,939	\$62,196	2,000	11,901	17,788	17,788	889,400	\$70	\$3,299	\$2,207	\$2,207
	Elwood bullress, J-2 excavalion, Area 1	Crewite Const	Tunnels (T	Plum Creek,												
E/J-2 Alt 2, Area 1	modified	Gravity Canal	Only)	1,200 CTS	#F1 000	¢00.000	Ф74 40F	0.000	11.001	22.000	45 500	0.070.441	\$ 00	¢4.000	¢1 500	¢1 100
	\$22,000	\$0,200	\$7,504 Tunnole (1	⇒15,252 Plum Crock	¢20,1C¢	\$22,869	J/4,495	2,000	11,901	33,000	45,569	2,278,441	 \$33	\$4,338	\$1,533	\$1,133
E/L2 Alt 2 Aron 2	Elwood buttress 1.2 execution Area 2	Gravity Canal		1 200 ofc									1			
	\$17,840	\$6,265	\$7,504	\$15,252	\$46,861	\$21,082	\$67,943	2,000	11,901	24,974	36,875	1,843,741	\$37	\$3,938	\$1,876	\$1,271

¹Base cost of reservoir (total estimated project cost without inlet, outlet, and conveyance costs). For Elwood, the cost represents improvements to the embankment. Notes:

²Total estimated project cost including base reservoir cost, inlet, outlet, and conveyance costs (sum of preceding columns)

³Water to augment SDHF can be either environmental account (EA) water routed down Lake McConaughy and staged in the reservoir or excess flows captured and stored in reservoirs immediately before a SDHF if available. Though the units are ac-ft per year, the values presented are the total volume of SDHF augmentation flows provided by the alternative over three days. ⁴Water to reduce shortages to target flows is excess flows in CNPPID's system that could between stored during times of excess, and released during periods of shortage. Elwood Reservoir use is outside of the time period when CNPPID requires use and is above the target operating

curve.

⁵SDHF Augmentation plus Reductions to Shortages to Target Flows, Normal Year

Reduction to Shortages to Target Flows Scoring

Impacted Reach Scoring

Capital Costs per Reduction to Shortages to Target Flows for Normal Illustrative Year (1975)

Capital Costs per Total Delivered Acre-feet, Normal Illustrative Year (1975)

Total Delivered Acre-feet per Year, Normal Illustrative Year (1975)

Reduction to Shortages to Target Flows Acre-feet per Year for the Normal Illustrative Year (1975)

OPERATION AND MAINTENANCE COSTS NRCS SUGGESTED RATE FOR AVERAGE ANNUAL COSTS

Control Measure

Percentage of Engineers Estimates Of Construction Costs (Excluding Land Prices)

Waterflow Control Measures

- a. Floodwater retarding structures 0.75%
- b. Concrete and asphalt lined channels, reinforced concrete chutes 1.25%
- c. Levees and dikes, major desilting basins 1.25%
- d. Channel improvements floodways 1.50%
- e. Other 1.75%

Drainage Measures

- a. Covered drains and appurtenances 0.75%
- b. Open drains and appurtenances 1.25%

Irrigation measures

- a. Water supply reservoirs 0.75%
- b. Canal laterals 1.25%
- c. Diversion dams and canal headworks 1.75%

Non-Agricultural Water Management Measures

a. Water supply reservoirs 0.75%

Operation and maintenance costs required on special items such as pumping plants, pipelines, etc. will vary so greatly no attempt is made to provide a rate. Applicants should work closely with persons who are familiar with these special items in developing suitable rates for such facilities.

Recreation Projects (from Nebraska Game and Parks Commission)

For recreation projects, use \$1.35 per recreation day.

December 2009

Elwood and J-2 Alternatives Operation and Maintenance Costs

							Pumped	Pumping Costs @	Pump	Power Generation	Annual Operating
					Capital	Operating	acre-feet	\$1.60/ac-ft	Replacement	Offset	Cost
Alternative	Reservoir ¹	Inlet	Outlet	Conveyance	Costs ² (\$000)	Cost rate		(\$000)	(\$000)	\$7.89	(\$000)
J -2 Alt 1	J-2 south channel option	J-2 Canal	Radial Gates	n/a							
	\$11,452	\$ -	\$6,008	\$	\$17,460	1.25%					\$218.25
J -2 Alt 2, Area 1	Area 1	Phelps Canal	Radial Gates	n/a							
	\$23,208	\$310	\$688	\$	\$24,206	0.75%					\$181.55
J -2 Alt 2, Area 2	Area 2	pumps	Radial Gates	n/a							
	\$15,043	\$2,115	\$325	\$	\$17,483	0.75%	6,868	\$11	\$10		\$152.11
J -2 Alt 2, Area 3	Area 3	J-2 Return	Radial Gates	n/a							
	\$39,719	\$465	\$340	\$	\$40,541	0.75%	10,592	\$17	\$10		\$331.00
J -2 Alt 2, Area 4	Area 4	J-2 Return	Radial Gates	n/a							
	\$83,102	\$465	\$310	\$	\$83,877	0.75%	26,076	\$42	\$10		\$680.80
J -2 Alt 2, Area 1 & 2	Areas 1&2	Phelps Canal	Radial Gates	n/a							
	\$38,251	\$775	\$1,013	\$	\$40,039	0.75%	6,868	\$11	\$10		\$321.28
J -2, Alt 3	9.7 Canal Reservoir	9.7 Canal	Radial Gates	n/a							
	\$5,392	\$310	\$357	\$	\$6,059	1.75%					\$106.03
				Plum Creek,							
E-1	Elwood buttress	Gravity Canal	Tunnels	2,400 cfs							
	\$2,797	\$6,265	\$12,507	\$21,373	\$42,942	1.25%				\$153.13	\$689.90
	Elwood remove & replace			Plum Creek,							
E-2	embankment	Gravity Canal	Open cut 2 pipes	2,400 cfs							
	\$9,453	\$6,265	\$8,353	\$21,373	\$45,444	1.25%				\$153.13	\$721.18
	Elwood remove & replace upstream			Plum Creek,							
E-3	shell	Gravity Canal	2-8' Tunnels	2,400 cfs							
	\$5,377	\$6,265	\$12,507	\$21,373	\$45,522	1.25%				\$153.13	\$722.15
		Existing E-65		Plum Creek,							
E-4	Elwood buttress	Canal	2-8' Tunnels	2,400 cfs							
	\$2,797	\$ -	\$12,507	\$21,373	\$36,677	0.75%	15,000	\$24	\$10	\$140.35	\$449.42
- -	Elwood remove & replace	Existing E-65		Plum Creek,							
E-5	embankment	Canal	Open cut 2 pipes	2,400 Cfs	*•••••••••••••		45.000	\$0 (\$ 10	* 4 4 9 9 5	* 4 * * 4 *
	\$9,453	\$ -	\$8,353	\$21,373	\$39,179	0.75%	15,000	\$24	\$10	\$140.35	\$468.19
	Elwood remove & replace upstream	Existing E-65		Plum Creek,							
E-0	snell	Canal	2-8° Tunneis	2,400 CTS	***	• •/		AA (<u> </u>	
	\$5,377	\$ -	\$12,507	\$21,373	\$39,257	0.75%	15,000	\$24		\$140.35	\$458.77
	Elwood buttress, J-2 excavation,	Crowity Caral	Tuppele (1 arth)	Plum Creek,							
⊏/J-∠ AIt ∠, Area T		Gravity Canal				0.75%				M 70 17	
	\$22,605	<u> </u>	\$7,504	\$15,252	\$51,626	0.75%				\$70.17	\$457.37
	Elwood buttress, J-2 excavation,	Growity Concl	Tuppele (1 entri)	Plum Creek,							
⊏/J-∠ AIL ∠, Area ∠					¢46.961	0.759/				¢70 17	¢401.60
	۵۱7,840		\$7,504	\$15,252	340,80 I	0.75%				\$/0.1/	\$421.63

Notes: ¹Base cost of reservoir (total estimated project cost without inlet, outlet, and conveyance costs). For Elwood, the cost represents improvements to the embankment. ²Total estimated project cost including base reservoir cost, inlet, outlet, and conveyance costs (sum of preceding columns)

Elwood Reservoir Gravity Inlet Canal Alternative

Table C-1 – Gravity Canal Opinion of Probable Cost, included in Alternatives E-1, E-2, E-3, E/J-2 Alt 2, Area 1, and E/J-2 Alt 2, Area 2

Gravity	Canal						
Ite m							
Number	Description	Appr. Quantity	Unit	U	n it Price		Amount
1	Mobilization / Demobilization	1	LS	\$	100,675.00	\$	100,675.00
2	Clearing and Gru bbing	35	AC	\$	1,000.00	\$	35,000.00
3	Earth Fill, Class A Compaction	300,000	СҮ	\$	4.00	\$	1,200,000.00
4	Salvaging and Spreading Topsoil	170,000	SY	\$	1.00	\$	170,000.00
5	8" Welded Steel Pipe	4,850	LF	\$	500.00	\$	2,425,000.00
6	SiphonAnchorage	12	EA	\$	1,000.00	\$	12,000.00
7	Inlettransition	1	EA	\$	15,000.00	\$	15,000.00
8	Outlet transition	1	EA	\$	15,000.00	\$	15,000.00
9	Manhole	10	EA	\$	5,000.00	\$	50,000.00
10	Valve and Drain Pipe	1	EA	\$	5,000.00	\$	5,000.00
11	Sup ply Canal Intake Gate Structure	1	EA	\$	50,000.00	\$	50,000.00
12	Local Drainage Structure	5	EA	\$	10,000.00	\$	50,000.00
					Subtotal =	\$	4,127,675
		20% Mapping Uncertaintity =					825,535
		20% Construction Contingency =				\$	825,535
		Probabal e Construction Costs =					5,778,745
		Per	\$	462,300			
	Lan	d Acquisiti on Co	sts (35 ac @	9 \$70	0 per ac) =	\$	24,500
		Total	Estimated	d Proj	e ct Cost =	\$	6,265,545

Elwood Reservoir Embankment Upgrade Alternatives

Table C-2 – Dam Replacement Opinion of Probable Cost, included in Alternatives E-2 and	E-5
--	-----

Remove	and Replace Existing Dam						
Item							
Numbe r	Description	Appr. Quantity	Unit		Unit Price		Amount
1	Mobilization / Demobilization	1	LS	\$	152,500.00	\$	152,500.00
2	Clearing and Grubbing	25	AC	\$	1,000.00	\$	25,000.00
3	Embankment Excavation	1,000,000	СҮ	\$	1.50	\$	1,500,000.00
4	Foundation Preparation	25	AC	\$	2,000.00	\$	50,000.00
5	Embankmnet Placement	1,000,000	CY	\$	3.00	\$	3,000,000.00
6	New Soil Cement	35,000	SY	\$	25.00	\$	875,000.00
7	Insturm antation Installation	1	LS	\$	150,000.00	\$	150,000.00
8	Site Restoration	25	AC	\$	20,000.00	\$	500,000.00
					Subto tal =	\$	6, 252, 500
		20%	6 Mapping	Uno	ertaintity =	\$	1, 250, 500
		20% Co	onstruction	Со	ntingen cy =	\$	1, 250, 500
		Proba	bale Const	ruc	tion Co sts =	\$	8, 753,500
		Permitting and Design (8%) =					700,280
		Total	Esti mateo	l P r	oject Co st =	\$	9, 453, 780

Table C-3 – Embankment Buttress Opinion of Probable Cost, included in Alternatives E-1, E-4, E/J-2 Alt 2, Area 1, and E/J-2 Alt 2, Area 2

Flatten	Upstream Slope					
Item						
Number	Description	Appr. Quantity	Unit		Unit Price	Amount
1	Mobilization / Demobilization	1	LS	\$	45,125.00	\$ 45,125.00
2	Clearing and Grubbing	15	AC	\$	1,000.00	\$ 15,000.00
3	Embankment Excavation	130,000	СҮ	\$	1.50	\$ 195,000.00
4	Foundation Preparation	15	AC	\$	2,000.00	\$ 30,000.00
5	Embankmnet Plaœment	130,000	CY	\$	3.00	\$ 390,000.00
6	New Soil Cement	35,000	SY	\$	25.00	\$ 875,000.00
7	Site Resortation	15	AC	\$	20,000.00	\$ 300,000.00
]			Subtotal =	\$ 1,850,125
		20%	6 Mapping	Unc	ertaintity =	\$ 370,025
		20% Construction Contingency =				\$ 370,025
		Probabale Construction Costs =				\$ 2,590,175
		Permitting and Design (8%) =				\$ 207,214
		Total	Estimated	d Pro	ject Cost =	\$ 2,797,389

Table C-4 – Remove and Replace Upstream Embankment Shell Opinion of Probable Cost, included in Alternatives E-3 and E-6

Remove	and Replace Upstream Shell						
Ite m							
Num ber	Description	Appr. Quantity	Unit		Unit Price		Amo unt
1	Mobilization / Demobilization	1	LS	\$	86,750.00	\$	86,750.00
2	Clearing and Grubbing	15	AC	\$	1,000.00	\$	15,000.00
3	Embankment Excavation	500,000	CY	\$	1.50	\$	750,000.00
4	Foun dation Preparation	15	AC	\$	2,000.00	\$	30,000.00
5	Embankmnet Place ment	500,000	CY	\$	3.00	\$	1,500,000.00
6	New Soil Cement	35,000	SY	\$	25.00	\$	875,000.00
7	Site Restoration	15	AC	\$	20,000.00	\$	300,000.00
					Subtotal =	\$	3,556,750
		20%	6 Map ping	Unc	ertaintity =	\$	711,350
		20% Construction Contingency =					711,350
		P robabale Construction Costs =					4,979,450
		Permitting and Design (8%) =					398,356
		Total	Estimated	d Pro	ject Cost =	\$	5,377,806

Elwood Reservoir Outlet Works Alternatives

Table C-5 - New Outlet Works as Part of Embankment Removal and Replacement Opinion of Probable Cost, included in Alternatives E-2 and E-5

New Ou	tlet (Cut and Cover)					
Item						
Number	Description	Appr. Quantity	Unit	Unit Price		Amount
1	Mobilization / Demobilization	1	LS	\$ 134,750.00	\$	134,750.00
2	Clearing and Grubbing	10	AC	\$ 1,000.00	\$	10,000.00
3	Embankment Excavation	150,000	CY	\$ 1.50	\$	225,000.00
4	Foundation Preparation	15	AC	\$ 2,000.00	\$	30,000.00
5	Concrete Structures	1	LS	\$ 2,000,000.00	\$	2,000,000.00
6	Steel Structures	1	LS	\$1,500,000.00	\$	1,500,000.00
7	Embankm net Placement	150,000	CY	\$ 3.00	\$	450,000.00
8	New Soil Cement	35,000	SY	\$ 25.00	\$	875,000.00
9	Site Restoration	15	AC	\$ 20,000.00	\$	300,000.00
				Subtotal =	\$	5,524,750
		20% Mapping Uncertaintity =				1,104,950
		20% Construction Contingency =				1,104,950
		Proba	\$	7,734,650		
		Per	d Design (8%) =	\$	618,772	
		Total	Estimated	d Project Cost =	\$	8,353,422

Table C-6 – Tunneling of New Outlet Pipes Opinion of Probable Cost, included in Alternatives E-1, E-3, E-4, and E-6

New Ou	tlet (Tunneled)				
Ite m					
Number	Description	Appr. Quantity	Unit	Unit Price	Amo unt
1	Mobilization / Demobilization	1	LS	\$ 201,750.00	\$ 201,750.00
2	Tunn eling	1,000	AC	\$ 7,000.00	\$ 7,000,000.00
3	Reinforce d Concre te Structures	1	LS	\$ 500,000.00	\$ 500,000.00
4	Steel Structures	1	LS	\$ 550,000.00	\$ 550,000.00
5	Site Restoration	1	AC	\$ 20,000.00	\$ 20,000.00
				Subtotal =	\$ 8,271,750
		20%	6 Map ping	Uncertaintity =	\$ 1,654,350
		20% Co	onst ru ction	Contingency =	\$ 1,654,350
		P roba	bale Const	truction Costs =	\$ 11,580,450
		Per	\$ 926,436		
		Total	Estimated	d Project Cost =	\$ 12,506,886

Plum Creek Upgrade Alternatives

Alternatives E-1, E-2, E-3, E-4, E-5, and E-6

Upg radi	ng Plum Creek for 2,400 cfs SDHF						
Ite m							
Number	Description	Appr. Quantity	Unit		Unit Price		Amo unt
1	Mobilization / Demobilization	1	LS	\$	344,409.00	\$	344,409.00
2	Clearing and Grubbing	15	AC	\$	1,000.00	\$	15,000.00
3	Ex cavation, Common	675,000	CY	\$	5.00	\$	3,375,000.00
4	Rock Rip Rap Armoring	159,000	CY	\$	55.00	\$	8,745,000.00
5	Salvaging and Spreading Topsoil	150,000	CY	\$	1.00	\$	150,000.00
6	Seed ing and Mulching	282	AC	\$	1,100.00	\$	310,200.00
7	Brid ge Construction, Concre te Slab Continuous (4 brdiges)	13,440	SF	\$	89.00	\$	1,196,160.00
					Sub tot al =	\$	14,135,769
		20%	6 Map ping	Unc	ertaintity =	\$	2,827,154
	20% Cc	Construction and Other Costs Contingency =					2,827,154
		Probabale Construction Costs =				\$	19,790,077
		Permitting and Design (8%) =					1,583,206
		Tota	Estimate	d Pro	o ject Cost =	\$	21,373,283

Table C-8 – Upgrade of Plum Creek for 1,200 cfs Opinion of Probable Cost, included in Alternatives E/J-2 Alt 2, Area 1, and E/J-2 Alt 2, Area 2

Upg radi	ng Plum Creek for 1,200 cfs SDHF						
Ite m							
Number	Description	Appr.Quantity	Unit	Un it Pri ce	•		Amo unt
1	Mobilization / Demobilization	1	LS	\$ 245,66	6.50	\$	245,666.50
2	Clearing and Grubbing	15	AC	\$ 1,0	00.00	\$	15,000.00
3	Ex cavation, Common	325,000	СҮ	\$	5.00	\$	1,625,000.00
4	Rock Rip Rap Armoring	121,000	СҮ	\$!	55.00	\$	6,655,000.00
5	Salvaging and Spreading Topsoil	114,000	CY	\$	1.00	\$	114,000.00
6	Seed ing and Mulching	215	AC	\$ 1,10	00.00	\$	236,500.00
7	Bridge Construction, Concrete Slab Continuous (4 brdiges)	13,440	SF	\$8	39.00	\$	1,196,160.00
				Sub to	tal =	\$	10,087,327
		20%	6 Mapping	Uncertaint	ity =	\$	2,017,465
	20% Cc	Construction and O ther Costs Contingency =					2,017,465
		Probabale Construction Costs =				\$	14,122,257
		Permitting and Design (8%) =					1,129,781
		Total	Estimated	d Project Co	ost =	\$	15,252,038

Table C-7 – Upgrade of Plum Creek for 2,400 cfs Opinion of Probable Cost, included in

J-2 Reregulating Reservoir Outlet Works Alternatives

Table C-9 – J-2 Alt 1

ltem					
Number	Description	Appr. Quantity	Unit	Unit Price	Amount
1	Mobilization / Demobilization	1	LS	\$ 300,297.25	\$ 300,297.25
2	Clearing and Grubbing	11	AC	\$ 1,000.00	\$ 11,000.00
3	Earth Fill, Class A Compaction	45,511	СҮ	\$ 5.00	\$ 227,555.00
4	Structural Concrete	3,816	СҮ	\$ 500.00	\$ 1,908,000.00
5	Radial Gates, Cable Operated with Controls	8	EA	\$ 751,000.00	\$ 6,008,000.00
6	Sheet Pile, Steel	197,360	SF	\$ 10.00	\$ 1,973,600.00
7	Rock Rip Rap at Outlet, Class C	1,070	CY	\$ 50.00	\$ 53,500.00
8	Rock Rip Rap Surfacing, Class B	44,742	CY	\$ 40.00	\$ 1,789,680.00
9	Gravel Surfacing	2,557	CY	\$ 15.00	\$ 38,355.00
10	Seeding and Mulching	2	AC	\$ 1,100.00	\$ 2,200.00
				Subtotal =	\$ 12,312,187

2,462,437 20% Construction Contingency = \$

Probable Construction Costs = \$ 14,774,625

Permitting and Design (8%) = \$ 1,181,970

Land Acquisition Costs (752 ac @\$2,000 per ac) = \$ 1,504,000

Total Estimated Project Cost = \$ 17,460,595

Table C-10 – J-2 Alt 2, Area 1

Item					
Number	Description	Appr. Quantity	Unit	Unit Price	Amount
1	Mobilization / Demobilization	1	LS	\$ 360,920.25	\$ 360,920.25
2	Clearing and Grubbing	10	AC	\$ 1,000.00	\$ 10,000.00
3	Excavation, Dispose off site	679,000	СҮ	\$ 5.00	\$ 3,395,000.00
4	Earth Fill, Class A Compaction	1,507,000	СҮ	\$ 4.00	\$ 6,028,000.00
5	Sand Drains	4,700	СҮ	\$ 20.00	\$ 94,000.00
6	Salvaging and Spreading Topsoil, 12" Thick	688,933	СҮ	\$ 4.00	\$ 2,755,732.00
7	Structural Concrete	850	CY	\$ 500.00	\$ 425,000.00
8	30' w x 13.5' h Radial Gate, Cable Operated with Controls	1	EA	\$ 310,000.00	\$ 310,000.00
9	40' w x 25' h Radial Gate (2@20'w x 25'h), Cable Operated with Controls	2	EA	\$ 344,039.00	\$ 688,078.00
10	90' Long x 36' Wide County Bridge	3,240	SF	\$ 75.00	\$ 243,000.00
11	Rock Rip Rap at Gates, Class C	610	CY	\$ 50.00	\$ 30,500.00
12	Gravel Surfacing	4,700	CY	\$ 15.00	\$ 70,500.00
13	Seeding and Mulching	430	AC	\$ 900.00	\$ 387,000.00
				Subtotal =	\$ 14,797,730

Subtotal = \$

20% Mapping Uncertainty = \$ 2,959,546

20% Construction Contingency = \$ 2,959,546

Probable Construction Costs = \$ 20,716,822 Permitting and Design (8%) = \$ 1,657,346

Land Acquisition Costs (458 a c @ \$4,000 per ac) = \$ 1,832,000

Total Estimated ProjectCost = \$ 24,206,168

Item					
Number	Description	Appr. Quantity	Unit	Unit Price	Amount
1	Mobilization / Demobilization	1	LS	\$ 247,764.20	\$ 247,764.20
2	Clearing and Grubbing	10	AC	\$ 1,000.00	\$ 10,000.00
3	Earth Fill, Class A Compaction	617,600	СҮ	\$ 4.00	\$ 2,470,400.00
4	Sand Drains	12,000	СҮ	\$ 20.00	\$ 240,000.00
5	Salvaging and Spreading Topsoil, 12" Thick	821,187	СҮ	\$ 4.00	\$ 3,284,748.00
6	Structural Concrete	600	СҮ	\$ 500.00	\$ 300,000.00
7	15' w x 13.5' h Sluice Gate, Cable Operated with Controls	2	EA	\$ 232,500.00	\$ 465,000.00
8	30' w x 20' h Radial Gate, Cable Operated with Controls	1	EA	\$ 325,000.00	\$ 325,000.00
9	Inlet Pumps & Motors, 80 cfs each, with controls and structure	3	EA	\$ 615,000.00	\$ 1,845,000.00
10	Sheet-Pile for Labyrinth Weir	18,748	SF	\$ 15.00	\$ 281,220.00
11	Concrete Outlet for labyrinth Weir	239	SF	\$ 500.00	\$ 119,500.00
12	Rock Rip Rap at Gates, Class C	540	CY	\$ 50.00	\$ 27,000.00
13	Gravel Surfacing	5,640	CY	\$ 15.00	\$ 84,600.00
14	Seeding and Mulching	509	AC	\$ 900.00	\$ 458,100.00

		Tota	Estimated	l Pr	ojectCost =	\$	17,483,398		
Table C-12 – J-2 Alt 2, Area 3									
Item									
Number	Description	Appr. Quantity	Unit		Unit Price		Amount		
1	Mobilization / Demobilization	1	LS	\$	626,622.20	\$	626,622.20		
2	Clearing and Grubbing	10	AC	\$	1,000.00	\$	9,500.00		
3	Excavation, Dispose off site	3,172,000	CY	\$	5.00	\$	15,860,000.00		
4	Earth Fill, Class A Compaction	437,460	CY	\$	4.00	\$	1,749,840.00		
5	Sand Drains	5,640	CY	\$	20.00	\$	112,800.00		
6	Salvaging and Spreading Topsoil, 12" Thick	821,187	СҮ	\$	4.00	\$	3,284,748.00		
7	Structural Concrete	750	CY	\$	500.00	\$	375,000.00		
8	15' w x 14' h Sluice Gate, Cable Operated with Controls	2	EA	\$	232,500.00	\$	465,000.00		
9	30' w x 20' h Radial Gate, Cable Operated with Controls	1	EA	\$	340,000.00	\$	340,000.00		
10	Inlet Pumps & Motors, 75 cfs each, with controls and structure	4	EA	\$	600,000.00	\$	2,400,000.00		
11	Rock Rip Rap at Gates, Class C	540	CY	\$	50.00	\$	27,000.00		
12	Gravel Surfacing	5,400	CY	\$	15.00	\$	81,000.00		
13	Seeding and Mulching	400	AC	\$	900.00	\$	360,000.00		
					Subtotal =	\$	25,691,510		
		2	0% Mapping	g Uı	ncertainty =	\$	5,138,302		
		20% C	onstruction	Co	ntingency =	\$	5,138,302		
		Prot	able Const	ruc	tion Costs =	\$	35,968,114		
		Per	mitting and	l De	esign (8%) =	\$	2,877,449		

Table C-11 – J-2 Alt 2, Area 2

Subtotal = \$ 10,158,332 2,031,666

2,031,666

14,221,665

1,137,733

1,696,000

40,541,563

20% Mapping Uncertainty = \$

20% Construction Contingency = \$

Probable Construction Costs = \$

Permitting and Design (8%) = \$

Land Acquisition Costs (531 ac @ \$4,000 per ac) = \$ 2,124,000

ASSOCIATES

Land Acquisition Costs (424 ac @ \$4,000 per ac) = \$

Total Estimated ProjectCost = \$

Table C-13 – J-2 Alt 2, Area 4

		-				
Item						
Number	Description	Appr. Quantity	Unit		Unit Price	Amount
1	Mobilization / Demobilization	1	LS	\$2	1,222,125.70	\$ 1,222,125.70
2	Clearing and Grubbing	10	AC	\$	1,000.00	\$ 10,300.00
3	Excavation, Dispose off site	7,849,000	СҮ	\$	5.00	\$ 39,245,000.00
4	Earth Fill, Class A Compaction	109,400	СҮ	\$	4.00	\$ 437,600.00
5	Clay Blanket, 2' Thick	2,600	СҮ	\$	4.00	\$ 10,400.00
6	Sand Drains	5,800	СҮ	\$	20.00	\$ 116,000.00
7	Salvaging and Spreading Topsoil, 12" Thick	1,053,507	СҮ	\$	4.00	\$ 4,214,028.00
8	Structural Concrete	750	СҮ	\$	500.00	\$ 375,000.00
9	15' w x 14' h Sluice Gate, Cable Operated with Controls	2	EA	\$	232,500.00	\$ 465,000.00
10	30' w x 10' h Radial Gate, Cable Operated with Controls	1	EA	\$	310,000.00	\$ 310,000.00
11	Inlet Pumps & Motors, 75 cfs each, with controls and structure	5	EA	\$	600,000.00	\$ 3,000,000.00
12	Rock Rip Rap at Gates, Class C	540	CY	\$	50.00	\$ 27,000.00
13	Gravel Surfacing	5,800	СҮ	\$	15.00	\$ 87,000.00
14	Seeding and Mulching	653	AC	\$	900	\$ 587,700
		-			Subtotal =	\$ 50,107,154

20% Mapping Uncertainty = \$ 15,032,146 20% Construction Contingency = \$ 10,021,431

Probable Construction Costs = \$ 75,160,731

Permitting and Design (8%) = \$ 6,012,858

ltem					
Number	Description	Appr. Quantity	Unit	Unit Price	Amount
1	Mobilization / Demobilization	1	LS	\$ 88,327.50	\$ 88,327.50
2	Clearing and Grubbing	19	AC	\$ 1,000.00	\$ 19,000.00
3	Earth Fill, Class A Compaction	114,000	СҮ	\$ 4.00	\$ 456,000.00
4	Feed Lot Lagoon Repairs	1	EA	\$ 25,000.00	\$ 25,000.00
5	Sand Drains	400	СҮ	\$ 20.00	\$ 8,000.00
6	Salvaging and Spreading Topsoil, 6" Thick	15,000	СҮ	\$ 4.00	\$ 60,000.00
7	Structural Concrete	4,300	CY	\$ 500.00	\$ 2,150,000.00
8	15' w x 15' h Radial Gate, Cable Operated with Controls	1	EA	\$ 295,000.00	\$ 295,000.00
9	30' w x 15' h Sluice Gate, Cable Operated with Controls	1	EA	\$ 357,000.00	\$ 357,000.00
10	Turf Reinforcement Mat for Spillway	5,000	SY	\$ 9.00	\$ 45,000.00
11	Rock Rip Rap at Gates, Class C	610	CY	\$ 50.00	\$ 30,500.00
12	Gravel Surfacing	4,700	CY	\$ 15.00	\$ 70,500.00
13	Seeding and Mulching	19	AC	\$ 900.00	\$ 17,100.00
				Subtotal =	\$ 3,621,428

Table C-14 – J-2 Alt 3

724,286 20% Mapping Uncertainty = \$

724,286 20% Construction Contingency = \$

Probable Construction Costs = \$ 5,069,999

Permitting and Design (8%) = \$ 405,600

Land Acquisition Costs (146 ac @ \$4,000 per ac) = \$ 584,000

Total Estimated ProjectCost = \$ 6,059,598

Tab	le	C-15	i – J	J-2	ŀ
-----	----	------	-------	------------	---

					_	
Item						
Number	Description	Appr. Quantity	Unit	Unit Price		Amount
1	Mobilization / Demobilization	1	LS	\$ 582,058.95	\$	582,058.95
2	Clearing and Grubbing	20	AC	\$ 1,000.00	\$	20,000.00
3	Excavation, Dispose offsite	834,996	СҮ	\$ 5.00	\$	4,174,980.00
4	Earth Fill, Class A Compaction	2,124,600	CY	\$ 4.00	\$	8,498,400.00
5	Sand Drains	16,700	СҮ	\$ 20.00	\$	334,000.00
6	Salvaging and Spreading Topsoil, 12" Thick	1,510,120	СҮ	\$ 4.00	\$	6,040,480.00
7	Structural Concrete	1,450	CY	\$ 500.00	\$	725,000.00
8	30' wx 13.5' h Radial Gate, Cable Operated with Controls	1	EA	\$ 310,000.00	\$	310,000.00
9	15' wx 13.5' h Sluiœ Gate, Cable Operated with Controls	2	EA	\$ 232,500.00	\$	465,000.00
10	40' w x 25' h Radial Gate (2@20'w x 25'h), Cable Operated with Controls	2	EA	\$ 344,039.00	\$	688,078.00
11	30' wx 20' h Radial Gate, Cable Operated with Controls	1	EA	\$ 325,000.00	\$	325,000.00
12	Sheet-Pile for Labyrinth Weir	18748	SF	\$ 15.00	\$	281,220.00
13	Concrete Outlet for labyrinth Weir	239	SF	\$ 500.00	\$	119,500.00
14	90' Long x 36' Wide County Bridge	3,240	SF	\$ 75.00	\$	243,000.00
15	Rock Rip Rap at Gates, Class C	1,150	СҮ	\$ 50.00	\$	57,500.00
16	Gravel Surfacing	10,340	CY	\$ 15.00	\$	155,100.00
17	Seedingand Mulching	939	AC	\$ 900.00	\$	845,100.00
-				Subtotal =	Ś	23,864,417

Alt 2 Area 1 & 2

4,772,883 20% Mapping Uncertainty = \$

2,672,815

3,956,000

40,038,998

20% Construction Contingency = \$

4,772,883 Probable Construction Costs = \$ 33,410,184

Permitting and Design (8%) = \$

Land Acquisition Costs (989 ac @ \$4,000 per ac) = \$

Total Estimated Project Cost = \$

Appendix D

Photolog

Photo 1. Elwood Reservoir dam

Photo 2. Elwood Reservoir

PHOTOLOG

Photo 3. Elwood Reservoir pump station

Photo 4. Downstream view from Elwood Dam

Photo 5. E-65 Canal

Photo 6. Phelps Canal siphon at Plum Creek

Photo 8. Plum Creek at confluence with Platte River

Photo 9. J2 wasting station

Photo 10. J2 below the J-2 Wasting Station

Photo 11. Platte River at J2 wasting station

Photo 12. Platte River below the J-2 Wasting Station

Photo 13. State Highway 283 bridge over Plum Creek, upstream face

Photo 14. State Highway 283 bridge over Plum Creek, downstream face

Photo 15. County Road 429 bridge over Plum Creek, upstream face

Photo 16. County Road 429 bridge over Plum Creek, downstream face

Photo 17. County Road 430 culvert in Plum Creek, upstream face

Photo 18. County Road 430 culvert in Plum Creek, downstream face

Photo 19. County Road 432 bridge over Plum Creek, upstream face

Photo 20. County Road 432 bridge over Plum Creek, downstream face

Photo 21. County Road 433 bridge over Plum Creek, upstream face

PLATTE RIVER RECOVERY IMPLEMENTATION PROGRAM

Elwood and J-2 Alternatives Analysis Project DRAFT REPORT PHOTOLOG

Photo 22. County Road 433 bridge over Plum Creek, downstream face

Photo 23. County Road 746 bridge over Plum Creek, upstream face

Photo 24. County Road 746 bridge over Plum Creek, downstream face

Photo 25. County Road 435 bridge over Plum Creek, upstream face

Photo 26. County Road 435 bridge over Plum Creek, downstream face

Photo 27. County Road 436 bridge over Plum Creek, upstream face

Photo 28. County Road 436 bridge over Plum Creek, downstream face

PHOTOLOG

Photo 29. County Road 437 culvert in Plum Creek, upstream face

Photo 30. County Road 437 culvert in Plum Creek, downstream face

Photo 31. County Road 749 bridge over Plum Creek, upstream face

Photo 32. County Road 749 bridge over Plum Creek, downstream face

Photo 33, NPPD Canaday Station steam power plant

Photo 34, NPPD Canaday Station steam power plant cooling water intake on J-2 Return Canal

Photo 35, Approach to J-2 Return wasting station

PHOTOLOG

Photo 36, J-2 Return wasting station radial gate discharge to the south channel of the Platte River

Photo 37, Downstream of the J-2 Return wasting station, canal leads to the south channel of the Platte River

Elwood and J-2 Alternatives Analysis Project DRAFT REPORT PHOTOLOG

Photo 38, Approach to the Phelps Canal siphon under Plum Creek

Photo 39, CNPPID J-2 Hydropower station

Appendix E

J-2 Seepage Analysis Memorandum

MEMO

Overnight	
Regular Mail	
Hand Delivery	
Other:	

TO:	Eric Dove, Olsson Associates
FROM:	Ryan Beckman, Olsson Associates
RE:	J-2 Alternative Analysis
DATE:	November 10, 2009
PROJECT #:	009-1466

This memorandum is provided to address the three alternative design options for the J-2 Return project located along the Platte River near Jeffreys Island. The purpose of this memorandum is to outline the general soil characteristics and associated seepage conditions in this region. The three alternatives were evaluated separately with the findings summarized below. In addition, preliminary embankment stability assessments and seepage conditions were completed for Alternative 1 and 2 based on assumed soil parameters of similar material previously evaluated in this region of Nebraska along with the available soil properties noted in the Natural Resource Conservation Services database.

Soil and Seepage Conditions Present for Alternatives 1, 2 and 3

Upon a review of the Soil Survey for Gosper and Phelps County by the Natural Resource Conservation Services, it was determined that variable soil conditions are present in the alternative areas. Based on the information available at this time, the presence of the sandy loams and poorly graded sands can have significant impacts on the general seepage conditions for each alternative. The following table highlights for each alternative the surface area of each soil type along with the associated surface area percentage and potential seepage impacts.

	ana a confrant		
Surface Area	Soil Depth	Soil Characteristics	Seepage Rates
(Percent)	(inches)		(cm/sec)
85.4	3 - 11	Fine Sand	0.0042 – 0.0141
	11-60	Fine to Coarse Sand	0.0042 – 0.0141
12.0	0 – 7	Loam	0.00042 – 0.00141
	7 – 13	Very fine sandy loam	0.0004 - 0.0042
	13 - 60	Silt loam	0.0014 – 0.0141
43.8	0 – 12	Loam	0.00042 – 0.00141
	12 – 29	Sandy loam to silty clay loam	0.00014 - 0.00141
	29 – 60	Gravelly sand	0.0141 – 0.0705
14.7	0 – 13	Silt loam	0.0042 - 0.00141
	13 – 33	Very fine sandy loam	0.0042 – 0.00141
12 27	33 - 60	Silt loam	0.0042 - 0.00141
19.1	0 – 7	Loam	0.00042 - 0.00141
	7 – 13	Very fine sandy loam	0.0004 - 0.0042
	13 - 60	Silt loam	0.0014 – 0.0141
9.0	0 – 12	Loam	0.00042 - 0.00141
	12 – 24	Sandy clay loam	0.00042 - 0.00141
	24 - 52	Fine sandy loam	0.0042 - 0.0141
5.0	0 - 60	Silt loam	0.00042 - 0.00141
94.5	0 - 60	Silt loam	0.000423 – 0.00141
3.9	0 - 60	Silt loam	0.000423 - 0.00141
	Surface Area (Percent) 85.4 12.0 43.8 43.8 14.7 19.1 19.1 9.0 9.0 5.0	Surface Area (Percent) Soil Depth (inches) 85.4 3 - 11 11- 60 11- 60 12.0 0 - 7 7 - 13 13 - 60 43.8 0 - 12 43.8 0 - 12 12 - 29 29 - 60 14.7 0 - 13 13 - 33 33 - 60 19.1 0 - 7 7 - 13 13 - 60 9.0 0 - 7 13 - 60 13 - 60 9.0 0 - 12 13 - 60 12 - 24 24 - 52 5.0 0 - 60 94.5 0 - 60 3.9	Surface Area (Percent) Soil Depth (inches) Soil Characteristics 85.4 3 - 11 Fine Sand 11-60 Fine to Coarse Sand 12.0 0 - 7 Loam 7 - 13 Very fine sandy loam 13 - 60 Silt loam 43.8 0 - 12 Loam 12.0 0 - 12 Loam 43.8 0 - 12 Loam 12 - 29 Sandy loam to silty clay loam 12 - 29 Sandy loam to silty clay loam 13 - 60 Silt loam 14.7 0 - 13 Silt loam 13 - 60 Silt loam 14.7 0 - 7 Loam 13 - 60 Silt loam 14.7 0 - 7 Loam 13 - 60 Silt loam 19.1 0 - 7 Loam 13 - 60 Silt loam 9.0 12 - 24 Sandy clay loam 13 - 60 Silt loam 9.0 0 - 60 Silt loam 94.5 0 - 60 Silt loam <

For additional information regarding the areas evaluated for the three alternatives along with the proximity of each soil type please refer to the attached Figures 1, 2, and 3 in Attachment A.

Table 1 Soil Properties and Seepage Rates

Preliminary Slope Configuration

Given the soil properties and parameters, a preliminary seepage and stability analysis was completed for Alternatives 1 and 2 to identify the typical cross section. As a result of the analysis, preliminary cost estimates were then completed based on the acceptable cross sections that were established. Figures 4 and 5 highlight the proposed cross-sections based on the very limited soil property information available at the time of this report.

SEEPAGE

For analysis of seepage, vertical soil permeability of 8.8 x 10⁻² cm/sec and 1.0 x 10⁻⁵ cm/sec were utilized to calculate seepage rates for the cohesionless and cohesive soils, respectively. Our analysis includes a horizontal to vertical permeability ratio of 10 for the cohesionless and cohesive soils. The permeability results are based on the average values obtained from the Soil Survey for Gosper and Phelps County by the Natural Resource Conservation Services. A rip rap permeability rate of 0.14 cm/sec, with a horizontal to vertical permeability ratio of 1, was utilized in the seepage analysis for Alternative #1.

FIGURE 5: Alternative 2

Table 2Alternative 1 Seepage Analysis

	Maximum	Cutoff
Ctrusture	Height of	wall depth
Structure	Impounded	(feet)
	Water (feet)	
J-2-D	17	34
J-2-C	12	20
J-2-B	11	17
J-2-A	8	10

Should you have any questions regarding the recommendations provided in this memorandum, please feel free to call me at (402) 458-5908.

Attachment A – Figures 1, 2, and 3

In order to manage the total potential seepage out of the bottom of the storage areas for Alternative 2, a 12-inch liner is recommended at the base. Further investigation and analysis is warranted to determine the potential uplift concerns and remedial measures related to the Phelps canal and the exit gradients at the Platte River.

SLOPE STABILITY

Shear strength parameters utilized in the slope stability analyses for the J-2 Return project were determined based on our engineering judgment. The soil properties with the shear strength parameters are summarized in Table 4.

SOLET KOT EKTLEST OK ANALTSIS								
Material	Wet Density, pcf	φ', degrees	c', psf					
Alluvium clay	120.0	28.0	25					
Foundation- Alluvium sand	120.0	32	0					
Rip rap	125.0	38.0	0					

TABLE 4 SOIL PROPERTIES FOR ANALYSIS

Based upon the assumed soil properties for Alternatives 1 and 2, the embankments were stable under the analyzed conditions of steady seepage and rapid drawdown. The maximum water height for both conditions was set at 3 feet below the top of the embankment. F:\Projects\009-1466\Gtech\MEMO_SeepageStabilty.doc

ATTACHMENT A Borrow Location Maps

Legend

二年

Proposed Dams Soils-Alternate 1 Type (% of Total Soils) Alda loam, rarely flooded (0.1%) Gibbon loam, rarely flooded (0.2%) Gosper loam, 0 to 1 percent slopes (0.1%) Gothenburg fine sandy loam, frequently flooded (1.8%) Gothenburg soils, frequently flooded (83.6%) Leshara-Saltine silt loams, occasionally flooded (0.1%) Lex loam, rarely flooded (0.7%) Platte loam, occasionally flooded (10.7%) Platte soils, occasionally flooded (1.3%) Platte-Wann complex, channeled, occasionally flooded (0.2%) Wann loam, rarely flooded (1.1%) Water

But for the former

J-2 Return-Alternative 1

Legend

Soils-Type, (% Total)

Coly silt loam, 11 to 30 percent slopes (94.5%) Holdrege silt loam, 0 to 1 percent slopes (1%) Holdrege silt loam, 3 to 7 percent slopes, eroded (0.2%) Hord silt loam, 0 to 1 percent slopes (0.4%) Kenesaw and Coly silt loams, hummocky, eroded (0.5%) Kenesaw silt loam, terrace, 1 to 3 percent slopes (1.5%) Kensaw and Coly silt loams, hummocky (1.9%)

Proposed Dam, J2 Storage 1,659 Acre-ft

Appendix F

Plum Creek HEC-RAS and Platte River and Plum Creek Peak Flow Analyses

Plum Creek HEC-RAS Modeling Results

		400	cfs		1,200 cfs			2,000 cfs			2,400 cfs					
River Sta	Top Width (ft)	Vel Chnl (ft/s)	Froude # Chl	Max Vel (ft/s)	Top Width (ft)	Vel Chnl (ft/s)	Froude # Chl	Max Vel (ft/s)	Top Width (ft)	Vel Chnl (ft/s)	Froude # Chl	Max Vel (ft/s)	Top Width (ft)	Vel Chnl (ft/s)	Froude # Chl	Max Vel (ft/s)
146128	123	2.8	0.46	3.5	175	4.2	0.58	5.3	203	5.2	0.67	6.7	216	5.5	0.68	7.0
144810	61	6.0	1.01	6.6	105	6.1	0.78	7.2	137	5.9	0.66	7.1	149	6.0	0.65	7.4
142835	96	2.5	0.35	3.2	131	3.9	0.46	5.0	146	5.2	0.56	6.5	154	5.6	0.59	7.1
137443	130	3.3	0.61	3.5	221	3.5	0.49	4.2	288	3.4	0.42	4.2	312	3.5	0.41	4.4
131070	94	2.0	0.23	2.1	139	2.7	0.26	3.1	246	2.7	0.27	3.3	280	2.8	0.28	3.5
126128	61	6.0	1.01	6.0	95	7.5	1.01	7.7	117	8.2	1.00	8.7	126	8.6	1.01	9.2
121468	223	1.2	0.17	1.4	350	1.4	0.15	1.7	424	1.5	0.16	1.9	453	1.6	0.16	1.8
116311	73	2.4	0.28	2.5	193	2.5	0.29	3.1	257	2.8	0.29	3.5	282	2.9	0.29	3.6
108989	70	2.9	0.37	3.3	105	3.9	0.41	4.8	127	4.5	0.42	5.5	136	4.7	0.42	5.7
103454	105	2.0	0.26	2.2	161	2.6	0.27	2.8	194	3.0	0.28	3.3	207	3.2	0.29	3.6
96433	138	1.5	0.18	1.7	254	1.8	0.19	2.3	320	2.0	0.20	2.6	347	2.1	0.20	2.8
90195	63	3.5	0.47	4.0	96	4.6	0.50	5.7	117	5.2	0.50	6.5	126	5.4	0.50	6.7
85050	114	1.7	0.20	2.1	155	2.2	0.21	2.7	186	2.4	0.20	2.8	198	2.5	0.20	3.1
79310	44	3.7	0.42	4.3	69	4.5	0.40	5.5	108	4.6	0.41	5.8	139	4.5	0.41	5.9
73749	58	2.5	0.27	3.2	158	3.6	0.32	4.7	188	4.3	0.35	5.6	200	4.6	0.36	6.0
68314	55	4.6	0.65	5.3	66	6.0	0.60	6.8	74	6.5	0.56	7.4	78	6.6	0.54	7.5
60655	79	1.9	0.20	2.1	98	2.6	0.21	2.9	110	3.1	0.23	3.4	115	3.3	0.23	3.7
53254	60	2.7	0.31	3.2	85	4.1	0.39	5.0	111	4.7	0.42	5.9	124	4.7	0.41	6.0
45419	101	2.0	0.25	2.6	163	2.3	0.23	3.1	201	2.6	0.23	3.4	211	2.8	0.25	3.7
39423	47	2.8	0.29	3.0	70	3.8	0.32	4.2	870	1.7	0.26	3.4	874	1.8	0.26	3.7
34109	29	5.4	0.59	6.5	45	6.7	0.58	8.2	83	6.5	0.59	8.5	100	6.3	0.57	8.6
30057	57	2.2	0.22	2.8	77	3.1	0.25	3.8	92	3.5	0.25	4.4	97	3.7	0.26	4.6
23493	39	3.7	0.40	4.4	61	4.7	0.40	5.8	134	5.3	0.47	6.8	172	5.6	0.49	7.2
19909	73	2.5	0.30	3.1	91	4.3	0.43	5.2	112	4.5	0.40	5.5	121	4.5	0.38	5.5
12784	93	2.9	0.41	3.4	113	3.3	0.32	3.7	120	4.4	0.39	4.9	122	5.0	0.44	5.6
7525	75	1.8	0.19	2.3	103	2.7	0.22	3.3	1807	2.7	0.22	3.3	1807	2.7	0.21	3.3
1853	68	4.4	0.66	4.6	88	6.1	0.72	6.7	101	7.1	0.75	7.9	106	7.5	0.76	8.4

Plum_Creek_near_Smithfield.rpt _____ Bulletin 17B Frequency Analysis 08 Oct 2009 04:55 PM --- Input Data ---Analysis Name: Plum Creek near Smithfield Description: Data Set Name: PLUM CREEK-SMITHFIELD, NE-FLOW-ANNUAL PEAK DSS File Name: F:\Projects\009-1466\HEC-SSP\J-2_Return\J-2_Return.dss DSS Pathname: /PLUM CREEK/SMITHFIELD, NE/FLOW-ANNUAL PEAK/01jan1900/IR-CENTURY/USGS/ Report File Name: F:\Projects\009-1466\HEC-SSP\J-2_Return\Bulletin17bResults\Plum_Creek_near_Smithfiel d\Plum_Creek_near_Smithfield.rpt XML File Name: F:\Projects\009-1466\HEC-SSP\J-2_Return\Bulletin17bResults\Plum_Creek_near_Smithfiel d\Plum Creek near Smithfield.xml Start Date: End Date: Skew Option: Use Weighted Skew Regional Skew: 0.3 Regional Skew MSE: 0.3 Plotting Position Type: Weibull Upper Confidence Level: 0.05 Lower Confidence Level: 0.95 Display ordinate values using 1 digits in fraction part of value --- End of Input Data ---_____ << Low Outlier Test >> _____ Based on 53 events, 10 percent outlier test deviate K(N) = 2.79Computed low outlier test value = 10.26 0 low outlier(s) identified below test value of 10.26 _____ << High Outlier Test >> _____ Based on 53 events, 10 percent outlier test deviate K(N) = 2.79Computed high outlier test value = 7,605.06 0 high outlier(s) identified above test value of 7,605.06

--- Final Results ---

<< Plotting Positions >> PLUM CREEK-SMITHFIELD, NE-FLOW-ANNUAL PEAK

Events	Analyzed		Ordered	Events	Woibull
Day Mon Yea	ar CFS	Rank	Year	CFS	Plot Pos
23 Jun 194	47 2,800.0	1	1947	2,800.0	1.85
23 Jun 194	48 2,230.0	2	1948	2,230.0	3.70
06 Jun 194	49 1,220.0	3	2008	1,440.0	5.56
30 May 195	50 404.0	4 F	1967	1,320.0	/.41
10 Jun 19:	51 588.0		1949	1,220.0	9.20
27 May 19:	5Z 90.0	6 7	1969	1,140.0	
10 May 19:	53 18.0		1965	985.0	14 91
16 Tup 19	54 220.0		1900	938.0	16 67
10 Jull 19	55 190.0	9 10	1965	905.0 865 0	18 52
16 Jun 19	57 844 0		1957	844 0	20.32
27 Feb 19	58 259 0	12	1960	620 0	22 22
26 Mar 19	59 175 0	13	1951	588 0	24 07
22 Mar 196	60 620.0	14	1962	562.0	25.93
17 Aug 196	61 470.0	15	1963	558.0	27.78
07 Jun 196	62 562.0	16	1985	549.0	29.63
15 Jun 196	63 558.0	17	1961	470.0	31.48
20 Apr 190	64 156.0	18	1975	462.0	33.33
24 May 196	65 985.0	19	1991	437.0	35.19
18 Oct 196	65 865.0	20	1984	427.0	37.04
13 Jun 196	67 1,320.0	21	1950	404.0	38.89
10 Aug 196	68 938.0	22	1970	355.0	40.74
18 Sep 196	69 1,140.0	23	1999	346.0	42.59
12 Jun 19	70 355.0	24	2005	335.0	44.44
25 Mar 19	71 17.0	25	1973	332.0	46.30
24 Jun 19	72 242.0	26	1977	323.0	48.15
01 Sep 19'	73 332.0	27	2007	306.0	50.00
12 Jun 19	74 15.0	28	1986	280.0	51.85
22 Jun 19	75 462.0	29	1978	270.0	53.70
09 Apr 19	76 143.0	30	1998	264.0	55.56
22 May 19	77 323.0	31	1958	259.0	57.41
11 Mar 19	78 270.0	32	1996	242.0	59.26
28 Jul 198	81 130.0	33	1972	242.0	61.11
14 Aug 198	82 44.0	34	1988	222.0	62.96
18 May 198	83 26.U		1954	220.0	64.81
05 JUL 198	04 42/.U	30 27	1990 1955	218.0	
UO Sep 198		3/ 20	1007	196.U	20.52 70 77
IU May 198		<u>3</u> 8 20	190/ 190/	101 O	10.3/
$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$		1 39 1 40	2000	175 O	74.22
1 19 0 198		1 40 1 41	2003 1959	175 O	75 93
1250011190	905.0 90 919.0	<u>∓⊥</u> 	1964	156 0	כפיני אר רך
12 Aug 192 07 Sen 199	91 437 0	42	1976	143 0	79 63
27 Max 100	96 942 0	44	1981	120 0	81 48
13 Aug 19	97 34 0	45	1956	116 0	83.33
30 Jul 190	98 264 0	46	1952	90 0	85,19
28 Jun 199	99 346.0	47	2004	89.0	87.04
24 May 200	03 175.0	48	1982	44.0	88.89

		Plum_Creek	_near_Smith	field.rpt	
10 Jul 20	04 89.0	49	1997	34.0	90.74
03 Jun 20	05 335.0	50	1983	26.0	92.59
11 Sep 20	06 184.0	51	1953	18.0	94.44
23 Aug 20	07 306.0	52	1971	17.0	96.30
24 May 20	08 1,440.0	53	1974	15.0	98.15

<< Skew Weighting >>

Based on 53 events, mean-square error of station skew =	0.148
Mean-square error of regional skew =	0.3

<< Frequency Curve >>

PLUM CREEK-SMITHFIELD, NE-FLOW-ANNUAL PEAK

Computed Expected	Percent	Confidence Limits
Curve Probability	Chance	0.05 0.95
FLOW, CFS	Exceedance	FLOW, CFS
5,134.2 5,841.2 3,999.9 4,427.6 3,228.6 3,507.3 2,532.7 2,701.8 1,729.4 1,806.1 1,210.5 1,245.1 768.1 780.0 299.3 299.3 105.8 103.7 35.7 33.4 13.2 11.4	0.2 0.5 1.0 2.0 5.0 10.0 20.0 50.0 80.0 90.0 95.0 99.0	9,648.0 3,191.8 7,205.2 2,559.8 5,612.4 2,116.6 4,232.8 1,704.8 2,724.3 1,210.1 1,811.5 874.8 1,085.2 573.8 393.4 228.6 141.3 75.2 82.3 38.9 52.2 21.8 21.5 6.8

<< Systematic Statistics >> PLUM CREEK-SMITHFIELD, NE-FLOW-ANNUAL PEAK

Log Transf FLOW, CF	orm: S	Number of Event	s
Mean	2.446	Historic Events	0
Station Skew	-0.670	Low Outliers	0
Regional Skew	0.300	Zero Events	0
Weighted Skew	-0.350	Missing Events	0
Adopted Skew	-0.350	Systematic Events	53
Platte_River_-_Overton,_NE,_Annual_Peak_Flow.rpt _____ Bulletin 17B Frequency Analysis 14 Oct 2009 03:20 PM --- Input Data ---Analysis Name: Platte River - Overton, NE, Annual Peak Flow Description: Data Set Name: PLATTE RIVER-OVERTON, NEBR.-FLOW-ANNUAL PEAK DSS File Name: F:\Projects\009-1466\HEC-SSP\J-2_Return\J-2_Return.dss DSS Pathname: /PLATTE RIVER/OVERTON, NEBR./FLOW-ANNUAL PEAK/01jan1900/IR-CENTURY/USGS/ Report File Name: F:\Projects\009-1466\HEC-SSP\J-2_Return\Bulletin17bResults\Platte_River_-_Overton,_N E,_Annual_Peak_Flow\Platte_River_-_Overton,_NE,_Annual_Peak_Flow.rpt XML File Name: F:\Projects\009-1466\HEC-SSP\J-2 Return\Bulletin17bResults\Platte River - Overton, N E,_Annual_Peak_Flow\Platte_River_-Overton,_NE,_Annual_Peak_Flow.xml Start Date: End Date: Skew Option: Use Station Skew Regional Skew: 0.0 Regional Skew MSE: 0.0 Plotting Position Type: Weibull Upper Confidence Level: 0.05 Lower Confidence Level: 0.95 Display ordinate values using 0 digits in fraction part of value --- End of Input Data ---<< Low Outlier Test >> _____ Based on 91 events, 10 percent outlier test value K(N) = 2.9840 low outlier(s) identified below test value of 727.6 _____ << High Outlier Test >> _____ Based on 91 events, 10 percent outlier test value K(N) = 2.984

0 high outlier(s) identified above test value of 59,309.81

--- Final Results ---

<< Plotting Positions >> PLATTE RIVER-OVERTON, NEBR.-FLOW-ANNUAL PEAK

Even	nts Analyz	ed		Ordered	Events	
Day Mon	Year	CFS	Rank	Year	FLOW CFS	Plot Pos
29 May	1915	19,600	1	1935	37,600	1.09
24 May	1916	5,200	2	1921	37,000	2.17
02 Jun	1917	29,300	3	1917	29,300	3.26
10 Oct	1918	9,000	4	1928	23,000	4.35
18 May	1920	21,500	5	1983	22,900	5.43
14 Jun	1921	37,000	6	1923	22,000	6.52
23 May	1922	9,400	7	1920	21,500	7.61
17 Jun	1923	22,000	8	1915	19,600	8.70
20 Jun	1926	15,500	9	1973	19,100	9.78
19 Apr	1927	12,800	10	1929	19,000	10.87
12 Jun	1928	23,000	11	1947	18,700	11.96
07 Jun	1929	19,000	12	1971	15,700	13.04
13 May	1930	9,940	13	1984	15,600	14.13
04 Apr	1931	10,600	14	1926	15,500	15.22
18 Mar	1932	6,120	15	1942	15,200	16.30
23 Apr	1933	8,440	16	1949	15,100	17.39
01 Feb	1934	5,210	17	1980	14,600	18.48
05 Jun	1935	37,600	18	1965	14,600	19.57
05 Mar	1936	6,100	19	1995	14,500	20.65
20 Mar	1937	7,050	20	1927	12,800	21.74
28 Feb	1938	7,680	21	1999	12,200	22.83
18 Mar	1939	9,660	22	2008	11,200	23.91
02 Mar	1940	8,940	23	1997	11,000	25.00
16 Mar	1941	2,330	24	1931	10,600	26.09
10 May	1942	15,200	25	1930	9,940	2/.1/
12 Apr	1943	3,860	26	1939	9,660	28.26
12 May	1944	4,070	27	1922	9,400	29.35
11 Jun	1945	5,530	28	1919	9,000	30.43
16 Mar	1946	3,490	29	1940	8,940	31.52
23 Jun	1947	18,700	30	1974	8,810	32.61
23 Jun	1948	5,990	31	1970	8,660	33.70
24 Jun	1949	15,100	32	1933	8,440	34./8
19 Mou	1949	3,ZIU 7 EE0	22	1006	7,000	35.0/
1 10 May	1052	7,330 5 710	25	1070	7,590	20.90
27 Mai	1052	3,710	33	1979	7,580	
	1953	2 920	27	1951	7,550	40 22
10 Mor	1955	2,930	37	1957	7,330	40.22
10 Mai	1955	2,370	20	1005	7,200	42.20
25 Mar	1950	1,970 7 520	39	1960	7,100	42.39
25 May	1957	5,330	40	1027	7,100	43.40
20 Mar	1959	2 960	42	1960	6 950	45 65
21 Mar	1960	6 950	42	1987	6 290	46 74
19 .Tum	1961	3 490	44	1996	6 300	47 82
	1962	7 100	45	1932	6 1 2 0	48 01
05 0 ull	1963	3 020	46	1967	6 100	50 00 1
	1964	2 360	47	1936	6 100	51 00 1
26 Turn	1965	14 600	т/ ДQ	1000	6 070	52.09 52.17
02 Mar	1966	3,410	49	1948	5,990	53.26

08 Jul 1967 6,100 50 1977 5,800 54.35 22 Feb 1968 2,550 51 1958 5,800 55.43 30 Jun 1969 7,260 52 1952 5,710 56.52 26 Jun 1970 8,660 53 1945 5,500 58.70 14 May 1972 4,750 55 1934 5,210 59.78 15 May 1973 19,100 56 1916 5,200 60.87 21 Jun 1975 5,500 58 1993 4,930 63.04 14 Apr 1976 2,860 59 1972 4,750 64.13 22 May 1977 5,890 60 1953 4,640 65.22 15 Mar 1978 3,600 61 1991 4,590 66.30 28 Jun 1979 7,580 62 2000 4,440 67.39 25 May 1980 14,600 63 2077 4,420 68.48 28 Jul 1981 3,730 64 <th></th> <th>Platte_Rive</th> <th>erOver</th> <th>ton,_NE,_</th> <th>Annual_Peak_</th> <th>_Flow.rpt</th>		Platte_Rive	erOver	ton,_NE,_	Annual_Peak_	_Flow.rpt
22 Feb 1968 2,550 51 1958 5,800 55.43 30 Jun 1969 7,260 52 1952 5,710 56.52 26 Jun 1970 8,660 53 1945 5,530 57.61 13 Jun 1971 15,700 54 1975 5,500 58.70 14 May 1972 4,750 55 1934 5,210 59.78 15 May 1973 19,100 56 1916 5,200 61.96 21 Jun 1975 5,500 58 1993 4,930 63.04 11 Apr 1976 2,860 59 1972 4,750 66.41 28 Jun 1979 7,580 62 2000 4,480 67.39 25 May 1980 14,600 63 2007 4,420 68.48 28 Jun 1981 3,730 64 1989 4,900 69.57 90 Mar 1982 2,520 <td>08 Jul 190</td> <td>67 6,100</td> <td> 50</td> <td>1977</td> <td>5,890</td> <td>54.35</td>	08 Jul 190	67 6,100	50	1977	5,890	54.35
30 Jun 1969 7,260 52 1952 5,710 56.52 26 Jun 1970 8,660 53 1945 5,530 57.61 13 Jun 1971 15,700 54 1975 5,500 58.70 14 May 1972 4,750 55 1934 5,210 59.78 15 May 1973 19,100 56 1916 5,200 60.87 21 Jun 1975 5,500 58 1993 4,930 63.04 21 Jun 1975 5,500 58 1993 4,640 65.22 15 Mar 1978 3,600 61 1991 4,590 66.30 28 Jun 1981 3,730 64 1989 4,090 69.57 09 Mar 1982 2,520 65 1944 4,070 70.65 28 Jun 1984 15,600 67 1981 3,730 72.83 30 Feb 1985 7,160 <td>22 Feb 190</td> <td>58 2,550</td> <td> 51</td> <td>1958</td> <td>5,800</td> <td>55.43</td>	22 Feb 190	58 2,550	51	1958	5,800	55.43
26 Jun 1970 8,660 53 1945 5,500 57.61 13 Jun 1971 15,700 54 1975 5,500 58.70 14 May 1973 19,100 56 1916 5,200 60.87 21 Mar 1974 8,810 57 1988 4,990 61.96 21 Jun 1975 5,500 58 1993 4,640 65.22 15 Mar 1976 2,860 59 1972 4,750 64.13 22 May 1977 5,890 60 1953 4,640 65.22 5 May 1980 14,600 63 2007 4,480 67.39 25 May 1980 14,600 63 2007 4,420 68.48 28 Jul 1981 3,730 64 1989 4,070 70.65 28 Jun 1983 2,200 65 1944 4,070 70.65 28 Jun 1983 2,500 <td>30 Jun 190</td> <td>59 7,260</td> <td> 52</td> <td>1952</td> <td>5,710</td> <td>56.52</td>	30 Jun 190	59 7,260	52	1952	5,710	56.52
13 Jun 1971 15,700 54 1975 5,500 58.70 14 May 1972 4,750 55 1934 5,210 59.78 15 May 1973 19,100 56 1916 5,200 60.87 21 Mar 1974 8,810 57 1988 4,990 61.96 21 Jun 1975 5,500 58 1993 4,930 63.04 14 Apr 1976 2,860 59 1972 4,750 64.13 22 May 1977 5,890 60 1953 4,640 65.22 15 Mar 1978 3,600 61 1991 4,590 66.30 28 Jul 1981 3,730 64 1989 4,090 69.57 09 Mar 1982 2,520 65 1944 4,070 70.65 28 Jul 1981 3,730 72.83 3.860 71.74 13 3 Jun 1984 15,600 <td>26 Jun 19'</td> <td>70 8,660</td> <td>53</td> <td>1945</td> <td>5,530</td> <td>57.61</td>	26 Jun 19'	70 8,660	53	1945	5,530	57.61
14 May 1972 4,750 55 1934 5,210 59.78 15 May 1973 19,100 56 1916 5,200 60.87 21 Mar 1974 8,810 57 1988 4,990 61.96 21 Jun 1975 5,500 58 1993 4,930 63.04 11 Apr 1976 2,860 59 1972 4,750 64.13 22 May 1977 5,890 60 1953 4,640 65.22 15 Mar 1978 3,600 61 1991 4,590 66.30 28 Jun 1979 7,580 62 2000 4,480 67.39 25 May 1980 14,600 63 2007 4,420 68.48 28 Jul 1981 3,730 64 1989 4,090 69.57 09 Mar 1982 2,520 65 1944 4,070 70.65 28 Jun 1984 15,600 67 1981 3,730 72.83 23 Feb 1985 7,160 68 <td>13 Jun 19</td> <td>71 15,700</td> <td>54</td> <td>1975</td> <td>5,500</td> <td>58.70</td>	13 Jun 19	71 15,700	54	1975	5,500	58.70
15 May 1973 19,100 56 1916 5,200 60.87 21 Mar 1974 8,810 57 1988 4,990 61.96 21 Jun 1975 5,500 58 1993 4,930 63.04 11 Apr 1976 2,860 59 1972 4,750 64.13 22 May 1977 5,890 60 1953 4,640 65.22 15 Mar 1978 3,600 61 1991 4,590 66.30 28 Jun 1979 7,580 62 2000 4,480 67.39 25 May 1980 14,600 63 2007 4,420 68.48 28 Jun 1981 3,730 64 1989 4,090 69.57 09 Mar 1982 2,520 65 1944 4,070 70.65 28 Jun 1983 22,900 66 1943 3,860 71.74 13 Jun 1984 15,600 67 1981 3,730 72.83 215 Hay 1987 6,890 70<	14 May 19	72 4,750	55	1934	5,210	59.78
21 Mar 1974 8,810 57 1988 4,990 61.96 21 Jun 1975 5,500 58 1993 4,930 63.04 11 Apr 1976 2,860 59 1972 4,750 64.13 22 May 1977 5,890 60 1953 4,640 65.22 15 Mar 1978 3,600 61 1991 4,590 66.30 28 Jun 1979 7,580 62 2000 4,480 67.39 25 May 1980 14,600 63 2007 4,420 68.48 28 Jul 1981 3,730 64 1989 4,090 69.57 09 Mar 1982 2,520 65 1944 4,070 70.65 28 Jun 1983 2,900 66 1943 3,600 71.74 13 Jun 1984 15,600 67 1981 3,730 72.83 29 Feb 1985 7,160 <td>15 May 19'</td> <td>73 19,100</td> <td>56</td> <td>1916</td> <td>5,200</td> <td>60.87</td>	15 May 19'	73 19,100	56	1916	5,200	60.87
21 Jun 1975 5,500 58 1993 4,930 63.04 11 Apr 1976 2,860 59 1972 4,750 64.13 22 May 1977 5,890 60 1953 4,640 65.22 5 Mar 1978 3,600 61 1991 4,590 66.30 28 Jun 1979 7,580 62 2000 4,480 67.39 25 May 1980 14,600 63 2007 4,420 68.48 28 Jul 1981 3,730 64 1989 4,090 69.57 09 Mar 1982 2,520 65 1944 4,070 70.65 28 Jun 1983 22,900 66 1943 3,760 72.83 23 Feb 1985 7,160 68 1978 3,600 73.91 18 Jun 1986 7,590 69 1961 3,490 76.09 31 May 1987 6,890 71 1966 3,410 77.17 27 Jun 1989 4,900 72	21 Mar 19'	74 8,810	57	1988	4,990	61.96
11 Apr 1976 2,860 59 1972 4,750 64.13 22 May 1977 5,890 60 1953 4,640 65.22 15 Mar 1978 3,600 61 1991 4,590 66.30 28 Jun 1979 7,580 62 2000 4,480 67.39 25 May 1980 14,600 63 2007 4,420 68.48 28 Jul 1981 3,730 64 1989 4,070 70.65 28 Jun 1983 22,900 66 1943 3,860 71.74 13 Jun 1984 15,600 67 1981 3,730 72.83 23 Feb 1985 7,160 68 1978 3,400 75.00 31 May 1987 6,890 70 1946 3,490 76.09 24 Feb 1988 4,990 71 1966 3,210 79.35 24 May 1991 4,590 <td>21 Jun 19</td> <td>75 5,500</td> <td>58</td> <td>1993</td> <td>4,930</td> <td>63.04</td>	21 Jun 19	75 5,500	58	1993	4,930	63.04
22 May 1977 5,890 60 1953 4,640 65.22 15 Mar 1978 3,600 61 1991 4,590 66.30 28 Jun 1979 7,580 62 2000 4,480 67.39 25 May 1980 14,600 63 2007 4,420 68.48 28 Jul 1981 3,730 64 1989 4,090 69.57 09 Mar 1982 2,520 65 1944 4,070 70.65 28 Jun 1983 22,900 66 1943 3,860 71.74 13 Jun 1984 15,600 67 1981 3,730 72.83 23 Feb 1985 7,160 68 1978 3,600 73.91 18 Jun 1986 7,590 69 1961 3,490 75.00 31 May 1987 6,890 71 1966 3,410 77.17 27 Jun 1989 4,090 72 1992 3,230 78.26 15 Aug 1990 3,200 73 1950 3,210 79.35 24 May 1991 4,590 74 1990 3,200	11 Apr 19'	76 2,860	59	1972	4,750	64.13
15 Mar 1978 3,600 61 1991 4,590 66.30 28 Jun 1979 7,580 62 2000 4,480 67.39 25 May 1980 14,600 63 2007 4,420 68.48 28 Jul 1981 3,730 64 1989 4,090 69.57 09 Mar 1982 2,520 65 1944 4,070 70.65 28 Jun 1983 22,900 66 1943 3,860 71.74 13 Jun 1984 15,600 67 1981 3,730 72.83 23 Feb 1985 7,160 68 1978 3,600 73.91 18 Jun 1986 7,590 69 1961 3,490 75.00 31 May 1987 6,890 71 1966 3,410 77.17 27 Jun 1989 4,090 72 1992 3,230 75 2001 3,160 81.52 29 <td>22 May 19</td> <td>77 5,890</td> <td>60</td> <td>1953</td> <td>4,640</td> <td>65.22</td>	22 May 19	77 5,890	60	1953	4,640	65.22
28Jun19797,5806220004,48067.3925May198014,6006320074,42068.4828Jul19813,7306419894,09069.5709Mar19822,5206519444,07070.6528Jun198322,9006619433,86071.7413Jun198415,6006719813,73072.8323Feb19857,1606819783,60073.9118Jun19867,5906919613,49076.0924Feb19884,9907119663,41077.1727Jun19894,0907219923,23078.2615Aug19903,2007319503,21079.3524May19914,5907419903,20080.4328Aug19923,2307520013,16081.5209Mar19934,9307619633,02082.6104Mar19942,9007719592,96083.7015Jun199514,5007819542,93084.7823Sep19966,7008119682,55088.0419Jun199711,0008019762,86086.9604Apr1998	15 Mar 19'	78 3,600	61	1991	4,590	66.30
25May 198014,6006320074,42068.4828Jul 19813,7306419894,09069.5709Mar 19822,5206519444,07070.6528Jun 198322,9006619433,86071.7413Jun 198415,6006719813,73072.8323Feb 19857,1606819783,60073.9118Jun 19867,5906919613,49076.0931May 19876,8907019463,49076.0924Feb 19884,9907219923,23078.2615Aug 19903,2007319503,21079.3524May 19914,5907419903,20080.4328Aug 19923,2307520013,16081.5209Mar 19934,9307619633,02082.6104Mar 19942,9007719592,96083.7015Jun 199514,5007819542,93084.7823Sep 19966,3007919942,90085.8719Jun 199711,0008019762,86086.9604Apr 19986,0708119682,55088.0419Aug 199912,2008219822,52089.1301Oct 19994,4808319552	28 Jun 19	79 7,580	62	2000	4,480	67.39
28Jul19813,7306419894,09069.5709Mar19822,5206519444,07070.6528Jun198322,9006619433,86071.7413Jun198415,6006719813,73072.8323Feb19857,1606819783,60073.9118Jun19867,5906919613,49075.0031May19876,8907019463,49076.0924Feb19884,9907219923,23078.2615Aug19903,2007319503,21079.3524May19914,5907419903,20080.4328Aug19923,2307520013,16081.5209Mar19934,9307619633,02082.6104Mar19942,9007719592,96083.7015Jun199514,5007819542,93084.7823Sep19966,3007919942,90085.8719Jun199711,0008019762,86086.9604Apr19986,7708119682,55088.0419Aug199912,2008219822,52089.1301Oct1999	25 May 198	30 14,600	63	2007	4,420	68.48
09Mar19822,5206519444,07070.6528Jun198322,9006619433,86071.7413Jun198415,6006719813,73072.8323Feb19857,1606819783,60073.9118Jun19867,5906919613,49075.0031May19876,8907019463,49076.0924Feb19884,9907119663,41077.1727Jun19894,0907219923,23078.2615Aug19903,2007319503,21079.3524May19914,5907419903,20080.4328Aug19923,2307520013,16081.5209Mar19934,9307619633,02082.6104Mar19942,9007719592,96083.7015Jun199711,0008019762,86086.9604Apr19986,0708119682,55088.0419Aug199912,2008219822,52089.1301Oct20003,1608419642,36091.3010Apr20022,0608519412,33092.3917Apr2003<	28 Jul 198	81 3,730	64	1989	4,090	69.57
28 Jun 1983 22,900 66 1943 3,860 71.74 13 Jun 1984 15,600 67 1981 3,730 72.83 23 Feb 1985 7,160 68 1978 3,600 73.91 18 Jun 1986 7,590 69 1961 3,490 75.00 31 May 1987 6,890 70 1946 3,490 76.09 24 Feb 1988 4,990 71 1966 3,410 77.17 27 Jun 1989 4,090 72 1992 3,230 78.26 15 Aug 1990 3,200 73 1950 3,210 79.35 24 May 1991 4,590 74 1990 3,200 80.43 28 Aug 1992 3,230 75 2001 3,160 81.52 09 Mar 1993 4,930 76 1963 3,020 82.61 04 Mar 1994 2,900 77 1959 2,960 83.70 15 Jun 1995 14,500 78 <td>09 Mar 198</td> <td>82 2,520</td> <td>65</td> <td>1944</td> <td>4,070</td> <td>70.65</td>	09 Mar 198	82 2,520	65	1944	4,070	70.65
13Jun198415,6006719813,73072.8323Feb19857,1606819783,60073.9118Jun19867,5906919613,49075.0031May19876,8907019463,49076.0924Feb19884,9907119663,41077.1727Jun19894,0907219923,23078.2615Aug19903,2007319503,21079.3524May19914,5907419903,20080.4328Aug19923,2307520013,16081.5209Mar19934,9307619633,02082.6104Mar19942,9007719592,96083.7015Jun199514,5007819542,93084.7823Sep19966,3007919942,90085.8719Jun199711,0008019762,86086.9604Apr19986,0708119682,55088.0419Aug199912,2008219822,3091.3010Oct19994,4808319552,37090.2221Oct20003,1608419642,33092.3917Apr2003 </td <td>28 Jun 198</td> <td>83 22,900</td> <td>66</td> <td>1943</td> <td>3,860</td> <td>71.74</td>	28 Jun 198	83 22,900	66	1943	3,860	71.74
23Feb19857,1606819783,60073.9118Jun19867,5906919613,49075.0031May19876,8907019463,49076.0924Feb19884,9907119663,41077.1727Jun19894,0907219923,23078.2615Aug19903,2007319503,21079.3524May19914,5907419903,20080.4328Aug19923,2307520013,16081.5209Mar19934,9307619633,02082.6104Mar19942,9007719592,96083.7015Jun199514,5007819542,93084.7823Sep19966,3007919942,90085.8719Jun199711,0008019762,86086.9604Apr19986,0708119682,55088.0419Aug199912,2008219822,52089.1301Oct19994,4808319552,37090.2221Oct20003,1608419642,36091.3010Apr20022,0608519412,33092.3917Apr2003 </td <td>13 Jun 198</td> <td>84 15,600</td> <td>67</td> <td>1981</td> <td>3,730</td> <td>72.83</td>	13 Jun 198	84 15,600	67	1981	3,730	72.83
18Jun19867,5906919613,49075.0031May19876,8907019463,49076.0924Feb19884,9907119663,41077.1727Jun19894,0907219923,23078.2615Aug19903,2007319503,21079.3524May19914,5907419903,20080.4328Aug19923,2307520013,16081.5209Mar19934,9307619633,02082.6104Mar19942,9007719592,96083.7015Jun199514,5007819542,93084.7823Sep19966,3007919942,90085.8719Jun199711,0008019762,86086.9604Apr19986,0708119682,55088.0419Aug199912,2008219822,52089.1301Oct19994,4808319552,37090.2221Oct20003,1608419642,36091.3010Apr20022,0608519412,33092.3917Apr20032,0108620062,18093.4801Mar2006 </td <td>23 Feb 198</td> <td>85 7,160</td> <td>68</td> <td>1978</td> <td>3,600</td> <td>73.91</td>	23 Feb 198	85 7,160	68	1978	3,600	73.91
31 May 19876,8907019463,49076.0924 Feb 19884,9907119663,41077.1727 Jun 19894,0907219923,23078.2615 Aug 19903,2007319503,21079.3524 May 19914,5907419903,20080.4328 Aug 19923,2307520013,16081.5209 Mar 19934,9307619633,02082.6104 Mar 19942,9007719592,96083.7015 Jun 199514,5007819542,93084.7823 Sep 19966,3007919942,90085.8719 Jun 199711,0008019762,86086.9604 Apr 19986,0708119682,55088.0419 Aug 199912,2008219822,52089.1301 Oct 19994,4808319552,37090.2221 Oct 20003,1608419642,36091.3010 Apr 20022,0608519412,33092.3917 Apr 20032,0108620062,18093.4801 Mar 20042,1408720042,14094.5705 Jun 20052,1208820052,12095.6530 Mar 20062,1808920022,06096.7402 Jun 20074,4209020032,01097.8325 May 200811,200<	18 Jun 198	86 7,590	69	1961	3,490	75.00
24 Feb 19884,9907119663,41077.1727 Jun 19894,0907219923,23078.2615 Aug 19903,2007319503,21079.3524 May 19914,5907419903,20080.4328 Aug 19923,2307520013,16081.5209 Mar 19934,9307619633,02082.6104 Mar 19942,9007719592,96083.7015 Jun 199514,5007819542,93084.7823 Sep 19966,3007919942,90085.8719 Jun 199711,0008019762,86086.9604 Apr 19986,0708119682,55088.0419 Aug 199912,2008219822,52089.1301 Oct 19994,4808319552,37090.2221 Oct 20003,1608419642,33092.3917 Apr 20032,0108620062,18093.4801 Mar 20042,1408720042,14094.5705 Jun 20052,1208820052,12095.6530 Mar 20062,1808920022,06096.7402 Jun 20074,4209020032,01097.8325 May 200811,2009119561,97098.91	31 May 198	87 6,890	70	1946	3,490	76.09
27Jun19894,0907219923,23078.2615Aug19903,2007319503,21079.3524May19914,5907419903,20080.4328Aug19923,2307520013,16081.5209Mar19934,9307619633,02082.6104Mar19942,9007719592,96083.7015Jun199514,5007819542,93084.7823Sep19966,3007919942,90085.8719Jun199711,0008019762,86086.9604Apr19986,0708119682,55088.0419Aug199912,2008219822,52089.1301Oct19994,4808319552,37090.2221Oct20003,1608419642,36091.3010Apr20022,0608519412,33092.3917Apr20032,0108620062,18093.4801Mar20042,1408720042,14094.5705Jun20052,1208820052,12095.6530Mar20062,1808920022,06096.7402Jun2007 </td <td>24 Feb 198</td> <td>88 4,990</td> <td>71</td> <td>1966</td> <td>3,410</td> <td>77.17</td>	24 Feb 198	88 4,990	71	1966	3,410	77.17
15Aug19903,2007319503,21079.3524May19914,5907419903,20080.4328Aug19923,2307520013,16081.5209Mar19934,9307619633,02082.6104Mar19942,9007719592,96083.7015Jun199514,5007819542,93084.7823Sep19966,3007919942,90085.8719Jun199711,0008019762,86086.9604Apr19986,0708119682,55088.0419Aug199912,2008219822,52089.1301Oct19994,4808319552,37090.2221Oct20003,1608419642,33092.3917Apr20032,0108620062,18093.4801Mar20042,1408720042,14094.5705Jun20052,1208820052,12095.6530Mar20062,1808920022,06096.7402Jun20074,4209020032,01097.8325May200811,2009119561,97098.91	27 Jun 198	89 4,090	72	1992	3,230	78.26
24May19914,5907419903,20080.4328Aug19923,2307520013,16081.5209Mar19934,9307619633,02082.6104Mar19942,9007719592,96083.7015Jun199514,5007819542,93084.7823Sep19966,3007919942,90085.8719Jun199711,0008019762,86086.9604Apr19986,0708119682,55088.0419Aug199912,2008219822,52089.1301Oct19994,4808319552,37090.2221Oct20003,1608419642,36091.3010Apr20022,0608519412,33092.3917Apr20032,0108620062,18093.4801Mar20042,1408720042,14094.5705Jun20052,1208820052,12095.6530Mar20062,1808920022,06096.7402Jun20074,4209020032,01097.8325May200811,2009119561,97098.91	15 Aug 199	90 3,200	73	1950	3,210	79.35
28Aug19923,2307520013,16081.5209Mar19934,9307619633,02082.6104Mar19942,9007719592,96083.7015Jun199514,5007819542,93084.7823Sep19966,3007919942,90085.8719Jun199711,0008019762,86086.9604Apr19986,0708119682,55088.0419Aug199912,2008219822,52089.1301Oct19994,4808319552,37090.2221Oct20003,1608419642,36091.3010Apr20022,0608519412,33092.3917Apr20032,0108620062,18093.4801Mar20042,1408720042,14094.5705Jun20052,1208820052,12095.6530Mar20062,1808920022,06096.7402Jun20074,4209020032,01097.8325May200811,2009119561,97098.91	24 May 199	91 4,590	74	1990	3,200	80.43
09Mar19934,9307619633,02082.6104Mar19942,9007719592,96083.7015Jun199514,5007819542,93084.7823Sep19966,3007919942,90085.8719Jun199711,0008019762,86086.9604Apr19986,0708119682,55088.0419Aug199912,2008219822,52089.1301Oct19994,4808319552,37090.2221Oct20003,1608419642,36091.3010Apr20022,0608519412,33092.3917Apr20032,0108620062,18093.4801Mar20042,1408720042,14094.5705Jun20052,1208820052,12095.6530Mar20062,1808920022,06096.7402Jun20074,4209020032,01097.8325May200811,2009119561,97098.91	28 Aug 199	92 3,230	75	2001	3,160	81.52
04 Mar 19942,9007719592,96083.7015 Jun 199514,5007819542,93084.7823 Sep 19966,3007919942,90085.8719 Jun 199711,0008019762,86086.9604 Apr 19986,0708119682,55088.0419 Aug 199912,2008219822,52089.1301 Oct 19994,4808319552,37090.2221 Oct 20003,1608419642,36091.3010 Apr 20022,0608519412,33092.3917 Apr 20032,0108620062,18093.4801 Mar 20042,1408720042,14094.5705 Jun 20052,1208820052,12095.6530 Mar 20062,1808920022,06096.7402 Jun 20074,4209020032,01097.8325 May 200811,2009119561,97098.91	09 Mar 199	93 4,930	76	1963	3,020	82.61
15Jun199514,5007819542,93084.7823Sep19966,3007919942,90085.8719Jun199711,0008019762,86086.9604Apr19986,0708119682,55088.0419Aug199912,2008219822,52089.1301Oct19994,4808319552,37090.2221Oct20003,1608419642,36091.3010Apr20022,0608519412,33092.3917Apr20032,0108620062,18093.4801Mar20042,1408720042,14094.5705Jun20052,1208820052,12095.6530Mar20062,1808920022,06096.7402Jun20074,4209020032,01097.8325May200811,2009119561,97098.91	04 Mar 199	94 2,900	77	1959	2,960	83.70
23Sep19966,3007919942,90085.8719Jun199711,0008019762,86086.9604Apr19986,0708119682,55088.0419Aug199912,2008219822,52089.1301Oct19994,4808319552,37090.2221Oct20003,1608419642,36091.3010Apr20022,0608519412,33092.3917Apr20032,0108620062,18093.4801Mar20042,1408720042,14094.5705Jun20052,1208820052,12095.6530Mar20062,1808920022,06096.7402Jun20074,4209020032,01097.8325May200811,2009119561,97098.91	15 Jun 199	95 14,500	78	1954	2,930	84.78
19Jun199711,0008019762,86086.9604Apr19986,0708119682,55088.0419Aug199912,2008219822,52089.1301Oct19994,4808319552,37090.2221Oct20003,1608419642,36091.3010Apr20022,0608519412,33092.3917Apr20032,0108620062,18093.4801Mar20042,1408720042,14094.5705Jun20052,1208820052,12095.6530Mar20062,1808920022,06096.7402Jun20074,4209020032,01097.8325May200811,2009119561,97098.91	23 Sep 199	96 6,300	79	1994	2,900	85.87
04 Apr19986,0708119682,55088.0419 Aug199912,2008219822,52089.1301 Oct19994,4808319552,37090.2221 Oct20003,1608419642,36091.3010 Apr20022,0608519412,33092.3917 Apr20032,0108620062,18093.4801 Mar20042,1408720042,14094.5705 Jun20052,1208820052,12095.6530 Mar20062,1808920022,06096.7402 Jun20074,4209020032,01097.8325 May200811,2009119561,97098.91	19 Jun 199	97 11,000	80	1976	2,860	86.96
19 Aug199912,2008219822,52089.1301 Oct19994,4808319552,37090.2221 Oct20003,1608419642,36091.3010 Apr20022,0608519412,33092.3917 Apr20032,0108620062,18093.4801 Mar20042,1408720042,14094.5705 Jun20052,1208820052,12095.6530 Mar20062,1808920022,06096.7402 Jun20074,4209020032,01097.8325 May200811,2009119561,97098.91	04 Apr 199	98 6,070	81	1968	2,550	88.04
01 Oct 19994,4808319552,37090.2221 Oct 20003,1608419642,36091.3010 Apr 20022,0608519412,33092.3917 Apr 20032,0108620062,18093.4801 Mar 20042,1408720042,14094.5705 Jun 20052,1208820052,12095.6530 Mar 20062,1808920022,06096.7402 Jun 20074,4209020032,01097.8325 May 200811,2009119561,97098.91	19 Aug 199	99 12,200	82	1982	2,520	89.13
21 Oct 20003,1608419642,36091.3010 Apr 20022,0608519412,33092.3917 Apr 20032,0108620062,18093.4801 Mar 20042,1408720042,14094.5705 Jun 20052,1208820052,12095.6530 Mar 20062,1808920022,06096.7402 Jun 20074,4209020032,01097.8325 May 200811,2009119561,97098.91	01 Oct 199	99 4,480	83	1955	2,370	90.22
10 Apr 20022,0608519412,33092.3917 Apr 20032,0108620062,18093.4801 Mar 20042,1408720042,14094.5705 Jun 20052,1208820052,12095.6530 Mar 20062,1808920022,06096.7402 Jun 20074,4209020032,01097.8325 May 200811,2009119561,97098.91	21 Oct 200	3,160	84	1964	2,360	91.30
17 Apr20032,0108620062,18093.4801 Mar20042,1408720042,14094.5705 Jun20052,1208820052,12095.6530 Mar20062,1808920022,06096.7402 Jun20074,4209020032,01097.8325 May200811,2009119561,97098.91	10 Apr 200	2,060	85	1941	2,330	92.39
01 Mar 20042,1408720042,14094.5705 Jun 20052,1208820052,12095.6530 Mar 20062,1808920022,06096.7402 Jun 20074,4209020032,01097.8325 May 200811,2009119561,97098.91	17 Apr 200	03 2,010	86	2006	2,180	93.48
05 Jun 20052,1208820052,12095.6530 Mar 20062,1808920022,06096.7402 Jun 20074,4209020032,01097.8325 May 200811,2009119561,97098.91	01 Mar 200	2,140	87	2004	2,140	94.57
30 Mar 2006 2,180 89 2002 2,060 96.74 02 Jun 2007 4,420 90 2003 2,010 97.83 25 May 2008 11,200 91 1956 1,970 98.91	05 Jun 200	05 2,120	88	2005	2,120	95.65
02 Jun 2007 4,420 90 2003 2,010 97.83 25 May 2008 11,200 91 1956 1,970 98.91	30 Mar 200	2,180	89	2002	2,060	96.74
25 May 2008 11,200 91 1956 1,970 98.91	02 Jun 200	07 4,420	90	2003	2,010	97.83
	25 May 200	11,200	j 91	1956	1,970	98.91

<< Skew Weighting >> Based on 91 events, mean-square error of station skew = 0.076 Mean-square error of regional skew = 0

<< Frequency Curve >> PLATTE RIVER-OVERTON, NEBR.-FLOW-ANNUAL PEAK

L	Computed	Expected	Percent	Confidence Limi	ts
ĺ	Curve	Probability	Chance	0.05	0.95
ĺ	FLOV	I, CFS	Exceedance	FLOW, CFS	İ

74,015	81,104	0.2	106,566	55,350
55,226	59,109	0.5	76,574	42,503
43,640	45,970	1.0	58,741	34,350
33,955	35,281	2.0	44,318	27,353
23,593	24,142	5.0	29,512	19,613
17,283	17,530	10.0	20,911	14,712
12,037	12,123	20.0	14,096	10,471
6,306	6,306	50.0	7,164	5,544
3,501	3,481	80.0	4,029	2,984
2,632	2,605	90.0	3,080	2,186
2,103	2,070	95.0	2,502	1,707
1,418	1,376	99.0	1,743	1,101

Platte_River_-_Overton,_NE,_Annual_Peak_Flow.rpt

<< Systematic Statistics >> PLATTE RIVER-OVERTON, NEBR.-FLOW-ANNUAL PEAK

Log Transf FLOW, CF	orm: 'S	Number of Event	s
Mean	3.8175	Historic Events	0
Standard Dev	0.3202	High Outliers	0
Station Skew	0.3333	Low Outliers	0
Regional Skew	0.0000	Zero Events	0
Weighted Skew	0.0000	Missing Events	0
Adopted Skew	0.3333	Systematic Events	91

Appendix G

Scope of Work for Feasibility Analysis of Preferred Alternative

Scope of Work for Feasibility Analysis of Preferred Alternative

The next step for implementation of the preferred option should be a feasibility analysis to refine the design, costs, constraints and schedule of the project. The following is a brief description of the major subjects to be analyzed.

Topographic Information

Before any further analysis in performed, much better and more accurate topographic information is required. Therefore, the aforementioned LiDar must become available, or the area should be mapped with conventional aerial photography methods.

Geotechnical Analysis

Assuming that the alternative that moves forward for further analysis is a combination of a new J-2 reservoir and the Elwood reservoir, further geotechnical analysis, including soil borings, needs to be conducted. Even if Elwood is not used for the bulk of SDHFs, any change to its operation should be analyzed in more detail than it has been so far with the additional geotechnical information.

Likewise, further analysis of any J-2 reservoir alternative should be with the benefit of additional geotechnical information. Seepage is still a major concern and lining options should be evaluated.

Permitting Information

A much more in depth evaluation than that performed during the alternative screening of the exact environmental permitting requirements, with an emphasis on time frames, needs to be conducted during the feasibility analysis.

Conceptual Design and Conceptual Design Level Opinions of Construction Costs

The cost estimates in the screening analysis should be further refined with the benefit of better topography, more complete geotechnical information and more developed design. Therefore, the following components of design should undergo conceptual level design:

- Outlet works from Elwood reservoir
- Conveyance from the outlet works to Plum Creek ٠
- Upgrades to Plum Creek •
- Earthwork for the proposed J-2 reservoir
- Outlet gate for the proposed J-2 reservoir

Model Operations and Refine the Impact on Operational Costs

The entire operations should be modeled one more time, and this will allow operational costs to be more accurately estimated.

Land Acquisition Requirements and Costs

A more accurate assessment of land acquisition needs and the associated costs need to be performed.

Schedule

A complete upgraded schedule is important at this time. Implementation by the year 2014 is still achievable, but a detailed schedule including critical path elements would be a useful tool for moving forward. The major components that need to be scheduled include:

- Preliminary Design
- Environmental permitting
- Land Acquisition
- Final Design and construction documents
- Construction
- Operational start up •

Appendix H

Elwood Embankment Stability Analysis

ELWOOD EMBANKMENT STABILITY ANALYSIS

The results and conclusions of the stability analysis of the Elwood Reservoir embankment is discussed in Section 3.1. The technical analysis is described in detail below.

Drawdown Curves

A set of drawdown curves was produced for the reservoir based on the reservoir storage curve and the required capacity of a new outlet. Drawdown curves ranging between 5,000 cfs and 500 cfs are included as Figure I-1, below. The discharge capacity reduces as the head on the pipe is reduced, but so does the reservoir storage. These two variables combine to create a drawdown curve that is almost linear over the operating range, see Figure I-1.

Figure I-1 – Elwood Drawdown Curves

Embankment Stability Analyses

The dam embankment cross-section used for the analyses, at dam centerline station 26+20, has been taken from the dam plans provided by the Nebraska Department of Natural Resources. The preliminary design parameters considered are listed below in Table I-1.

The first set of analyses uses the minimum values of all the parameters, with the exception of the soil cement where the maximum value has been used.

Geotechnical properties shown below are assumed values and have been established based on experience with similar material through discussion with members of our team who have worked with the soils in this area.

Table I-1 – Elwood Reservoir Elinbarkment Preliminary Design Parameters										
Material	Density (pcf)		c′ (psf)		φ′ (°)		k (cm/sec)		anisotropy k _h /k _v	
	min	max	min	max	min	max	min	max	min	max
Shoulder fill	120	128	0	100	25	27	1e-7	5e-6	1	3
Core fill	118	125	0	50	25	27	1e-7	1e-6	1	3
Soil cement	125	130	50	200	30	35	3e-12	As fill	0.1	1
Drainage material	120	130	0	0	30	33	1e-3	1e-1	1	1
Foundation clayey silt	125	130	0	150	25	27	5e-8	5e-6	1	10
Foundation silty sand	125	130	0	50	28	32	1e-6	1e-5	1	10

The steady state phreatic surface through the embankment is shown in Figure B-2. As the material properties in the shell and core are very similar there is no change in permeability through the embankment. We also have assumed the permeability of the soil cement is similar to the embankment. These assumptions generate a phreatic surface without significant drops or changes.

Stability analyses to determine the factor of safety against failure were performed using the limit equilibrium computer program Slope/W. This program was used to search multiple failure surface and the most critical of these surface are reported. Only rapid drawdown stability was evaluated.

- marker Fuck and the set (Dealine in a marker of the Dealers of the

Figure I-2 – Steady Seepage Results – Run 1

The factor of safety for varying drawdown rates is shown below in Table I-2. Runs 1 to 4 give the minimum factors of safety, obtained by varying the drawdown rate while maintaining the other parameters unchanged. It can be seen that even with the drawdown rate reduced to 500 cfs, the rate is too fast to maintain a minimum factor of safety of greater than the typically accepted value of 1.2, during drawdown. The effect of the slower drawdown is just apparent in the results but with the permeability assumed, the drawdown would need to be significantly slower for any real improvement in stability.

			Galoalated I	Min Eactor of					
	Draw-	Permeability (cm/sec)		Safety	Comments				
Run No.	down rate	C :11	Soil-						
		ГШ	Cement						
	Constant permeability - varied drawdown rate								
1	5000 cfs	1e-7	1e-7	0.93					
2	2000 cfs	1e-7	1e-7	0.93					
3	1000 cfs	1e-7	1e-7	0.94					
4	500 cfs	1e-7	1e-7	0.95					
	Constant ra	Constant rate of drawdown – varied permeability							
5	2000 cfs	1e-6	1e-6	0.85					
6	2000 cfs	1e-7	1e-8	0.99					

T

Runs 5 and 6 evaluate the effects of small variations in the permeability of the fill and of the soil-cement. In Run 5, the permeability of both these materials is increased by a factor of 10. At first sight, it would be expected that the increase in permeability would improve the stability, however just the opposite occurs. A comparison between Run 1 and Run 4, where the rate of drawdown is varied by the same factor of 10, indicates that this is an insufficient change to significantly affect the stability and a factor of safety of about 0.95 would be expected. However, there is a reduction from 0.95 to 0.85 when a permeability factor of 10 is applied. On examination of the output, it appears this is the effect of increased flow to the blanket drain, which appears to be surcharged, resulting in a rise in the steady-state phreatic surface. A comparison of Figure I-3 and Figure I-4 shows this small difference. These results demonstrate that small changes in one part of the model can have an unexpected effect elsewhere.

The results from Run 6 show that although the lower permeability in the soil-cement gives a reduced steady state phreatic surface (Figure I-4), the minimum factor of safety during drawdown is not significantly affected.

Plots of factor of safety against reservoir level (shown as time) are given in Figures I-5 and I-6. Figure I-5 shows the full range of results for runs 1 to 4, inclusive. Within the range of drawdown rates considered, the factor of safety is not affected by the rate but only by the reservoir level. The assumed permeability of the embankment causes drainage of the embankment to be so slow -- that only extremely slow drawdown rates will maintain an acceptable factor of safety throughout the drawdown.

This would seem to indicate that the stability of the existing embankment over the years has been achieved because of its rapid filling and draining. This operation has inhibited the formation of steady state seepage conditions within the embankment.

Figure I-6 shows the results of Runs 2, 5 and 6. It is interesting to note that the effect of the higher fill permeability is to reduce the steady state factor of safety, below the usual requirement of 1.5.

Lastly, stability analyses of the embankment based on provided target operation curves was performed. These curves include a normal Target Operating Curve (TOC) and two operating curve scenarios where short duration high capacity flows would be delivered from Elwood. These two operating curves are identified as the Modified TOC and the PRRIP drawdown.

Again, without substantial data, broad assumptions were made as part of these analyses. These assumptions include utilizing the same geotechnical characteristics as our previous analyses. We also made the assumption that the embankment and internal phreatic surface was at a steady state condition prior to the initiation of these operation curves. We have plotted the embankment factor of safety at each stage of reservoir operation on the attached figure for each operating curve.

These analyses show that instability of the embankment begins to occur when the reservoir elevation is close to 2,580 feet, regardless of the planned operation curve. However, it is important to restate that we have assumed the embankment is in a steady state seepage condition at the beginning of these analyses. Instability likely has not occurred to date because it does not appear the reservoir has been filled long enough for steady state seepage conditions to develop at the Elwood Dam. Because of the possibility of this condition occurring at Elwood, we believe this is the most conservative condition from which to perform these analyses. We recognize that the operation of the reservoir may not have allowed steady state seepage conditions, under full reservoir heads, to fully develop.

BLACK & VEATCH

Figure I-7 – Embankment Factor of Safety for Three Reservoir Operation Curves

Conclusions of Existing Embankment Stability Analysis

- a. The analyses performed indicate that changing the operation of the Elwood Dam to release 2,400 cfs over three days has the potential to destabilize the upstream slope. This destabilization is likely to occur if rapid drawdown were to occur after steady state conditions had been established. Steady state conditions could exist if the reservoir were filled to its normal elevation and maintained there for an extended period of time. Without a better understanding of the permeability characteristics of the embankment material, it is difficult to estimate how long it will take for steady state conditions to be established.
- b. Assuming the existing dam consists of homogenous materials (the characteristics of which are detailed in the stability analysis in Appendix I), the factors of safety during rapid drawdown of 2,400 cfs drop well below the normally accepted value of 1.2 to a minimum of 0.93
- c. Reducing the drawdown rate to 500 cfs would not significantly improve the rapid drawdown stability situation. Therefore, it was concluded that the stability of the existing dam would not be acceptable under any reasonable drawdown rate that would be beneficial for SDHF augmentation.
- d. The results are sensitive to variations in relative permeability of the various fill materials, including the drainage materials. No sensitivity analysis was done on the strength parameters but the results are likely to be less sensitive to a realistic variation in strength as opposed to the conservative estimates used in the analysis. In situ and laboratory permeability testing of all materials will be required to improve the estimate of rapid drawdown stability. This testing needs to be complemented by particle size analyses to assess the variability. Effective stress shear strength tests also will be necessary.

Appendix I

Summary of J-2 Options and Additional J-2 Options Not Scored

			Storage	Storage	Storage	Storage
Number	Alternative	Description	Area (ac-ft)	Area (ac-ft)	Area (ac-ft)	Area (ac-ft)
1	South Channel Impoundments	Dams J2-A, J2-B, J2-C, and J2-D	J2-A	J2-B	J2-C	J2-D
		al located on the south channel, cascading				
		impoundments no excavation, impounding				
		water from Jeffrey's Island to the south				
		shore of the south channel'	268	657	642	1608
		Excavation areas cutting back along the				
2	South Channel Excavation	banks of the south channel	Area 1	Area 2	Area 3	Area 4
			9716	6818	4516	6137
		Areas 3 and 4 would impound water above			note - 2533	note - 960
		J2 return entrance level and therefore would			ac-ft without	without
		require pumping			pumping	pumping
3	9-7 Canal Impoundment	Located at discharge of the 9-7 Canal				
4	Widen J-2 Canal	limited storage				
		The North Channel of the Platte has				
		Threatened and Endangered Species				
5	Impoundment on North Channel	habitat.				
		Without excavation and containment,				
	South Channel Impoundments higher than	inundation would involve houses, crop land,				
6	the south bank	etc.				
		limited ability, due to the operation of the				
7	Raise embankments of J2 return	hydropower station				
	Raise county road 749, and impound water					
8	behind it					
9	Use of wells and pumps					
10	Combination of Alternatives 1 and 2					
11	Balancing earthwork for Alternative 2					
	Alternative Color Code					
		Full Capability options				
		option with limited SDHF / Target Flow				
		discussion only				

Summary of J-2 Options and Additional J-2 Options Not Scored

